ELF>c@@8@qq {{${$*+ (}(}$(}$$$PtdQtdRtd{{${$PPGNU-m@j6X[hCTL| @ |~BE|qXG~@I  o-6fZYh:Z| L}YVP:{Ki  BaJc/oY&'1;oDp8 {R"-b"#$6$*$ ] Hxl o' __gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizelibm.so.6libpthread.so.0libc.so.6PyTuple_Type_Py_NoneStructPyObject_CallObjectPyExc_RuntimeErrorPyErr_SetString_PyObject_NewPyObject_IsTruePyExc_KeyErrorPyExc_ValueErrorPyDict_SizePyDict_GetItemWithErrorPyExc_TypeErrorPyErr_Occurred_Py_TrueStruct_Py_NotImplementedStructPyErr_Clear_Py_FalseStructPyUnicode_FromFormatPyLong_AsSsize_tPyUnicode_ComparePyLong_FromLongPyList_AsTuplePyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyUnicode_NewPyType_IsSubtypePyObject_Free_Py_DeallocmbstowcsPyUnicode_FromWideCharPyUnicode_AsUTF8StringPyTuple_SizePyLong_AsLongPyMem_MallocsnprintfPyMem_FreePyErr_NoMemoryPyContextVar_SetPyContextVar_GetPyArg_ParseTupleAndKeywordsPyDict_NewPyDict_SetItemPyList_NewPyList_AppendPyErr_SetObjectstrcmpPyErr_FormatPyLong_FromSsize_t__ctype_b_locstderrfprintffwritefputcabortPyUnicode_FromStringPyObject_GenericSetAttrPyExc_AttributeError_Py_ascii_whitespace_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigit_PyUnicode_ReadymemsetPy_BuildValuePyList_SizePyList_GetItemmemcpy__errno_locationstrtollPyArg_ParseTuplePyFloat_FromStringPyFloat_AsDoublePyComplex_FromDoublesPyLong_FromUnsignedLongPyTuple_NewPyObject_CallFunctionObjArgs_PyLong_NewPyExc_OverflowError_PyLong_GCDPyTuple_PackPyUnicode_AsUTF8AndSizePyUnicode_DecodeUTF8memmove__ctype_tolower_locPyDict_GetItemStringlocaleconvceilPyFloat_Type__isnan__isinfPyBool_FromLongPyComplex_TypePyObject_IsInstancePyObject_GetAttrStringPyComplex_AsCComplexPyFloat_FromDoublePyInit__decimalPyMem_ReallocPyLong_TypePyBaseObject_TypePyType_ReadyPyDict_SetItemStringPyImport_ImportModulePyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectPyExc_ArithmeticErrorPyErr_NewExceptionPyExc_ZeroDivisionErrorPyContextVar_NewPyUnicode_InternFromStringPyModule_AddStringConstantPyModule_AddIntConstantfreerealloccallocmallocPyObject_HashNotImplementedPyType_GenericNew_edata__bss_start_end/opt/alt/python38/lib64:/opt/alt/sqlite/usr/lib64GLIBC_2.2.5GLIBC_2.3GLIBC_2.14a ui mk ui m{ii yui m{$@{${${$|$@H|$$|$$|$$|$D|$M|$X|$f}$r}$}$}$ }$X$F$!d$$$$($$h$p$$ȅ$@$$ $&؆$$ $$ F$00$@H$Ph$@$x$$$8$P$x$$$Ј$$@$$ $H$iX$`$ȉ$$P$$0 $($0$0H$P$X$p$Ɔx$$$ˆ$$`$ԆȊ$Њ$$݆$ $@$H$ `$h$$$0ȋ$Ћ$` $p($@0$B8$pZ@$VH$P$X$p`$h$pH$$P$pY$;@$H$`dX$``$h$nx$$$`l$$ $p$$ȍ$ ؍$ $"$ $$,$$ $8($>8$@$JH$X$@`$\h$`x$$a$0<$$i$:$$†Ȏ$@9؎$`$x$7$$dž$`6$  $($48$@$H$3X$@`$h$x$$$P_$$$a$$ȏ$؏$$$$$LJ$@$ $Ӈ($@8$@$ڇH$ X$ `$h$ x$$$$ $$H$$Ȑ$ؐ$$$$$$$@ $($8$@$H$X$@`$&h$x$$,$$$5$p$$Aȑ$ؑ$$F$$@$U$ $ $b($H8$@@$pH$`2X$@`$~h$@1x$@$$/$`$$.$$Ȓ$0-ؒ$$$+$$$@*$ $ʈ($E8$@@$шH$(X$``$؈h$`'x$@$$0$ $ވ$J$$ȓ$0ؓ$$$ $$  $($@$H$I`$h$M$$pM$&$0M$0Ȕ$0$:$I$F$@$1H$`&X$`$h$cx$$$`m$@$$k$$ȕ$%ؕ$$ $ %$ $$$$ $"($@#8$`@$H$#X$`$,h$@@x$$8$@$$J$@@$$\Ȗ$-ؖ$`$Q$$ $a$P$ $i($0"8$@$UH$p:X$@`$\h$0x$$g$X$$†$ !$ $xȗ$ ؗ$$dž$$`$$$ $n($0K8$@$H$X$``$h$`x$$w$$`$$&$$Ș$ ؘ$@$$P$$$?$ $($P8$@$H$pX$`$&h$x$$$$`$$$$LJș$ؙ$$Ӈ$ $@$$`$ $ڇ($`8$@$H$X$ `$h$`x$$$$`$$$$Ț$$$`$$,$$` $($8$ @$5H$0X$`$Ah$x$`$F$$ $U$$$ț$؛$`$b$PJ$$p$`$ $~($8$ @$H$`X$`$h$Px$$$@$`$$0$ $ʈȜ$`G؜$$$ $`$ш$ $ $؈($8$@$H$X$``$ɉh$`x$ $$$$8$ȝ$؝$$Չ$й$$$o$@@$H$X$`$ h$x$`$$$ $!О$*$3$<H$܉P$`$@$$V$X$^$XП$^؟$X$^$X$^$X0$^8$XP$^X$Xp$^x$X$^$X$^Ƞ$dР$X$^$X$^$X $^($X@$^H$X`$^h$X$^$X$^$X$^ȡ$X$^$X$^$X $($ˆ0$X@$H$ֈP$j`$ˆh$X$ˆ$X$X$X$XТ$X$X$X$X$X $X@$yH$q`$h$$$$Ɗ$$ȣ$؊$$X $X0$X@$X`$h$yp$9x$y$y$y$$y$y$y$"$P$Ȥ$Ф$a$$ˆ$Ɔ$$Ԇ$݆$É$ω@$yH$q`$"h$$9$1$P$H$aȥ$Y$$k$$} $($@$H$$ $ ($ 0$8$@$H$P$"X$#`$'h$(p$7x$;$>$?$C$E$R$S$[$]$`$h$p$s$t$z $($Z0$38$O$$Ѓ$Bp$B$Bx$%$+`$+$ $($0$8$@$H$P$ X$ `$h$p$x$$$$$$$$$$Ȁ$Ѐ$ ؀$!$&$)$*$+$,$-$.$/ $0($10$28$4@$5H$6P$8X$9`$:h$<p$=x$@$A$B$D$F$G$H$I$J$Kȁ$LЁ$M؁$N$P$Q$T$U$V$W$X$Y $\($^0$_8$a@$bH$cP$dX$e`$fh$gp$ix$j$k$l$m$n$o$q$r$u$vȂ$wЂ$x؂$y${HH!$HtH5!$%!$@%!$h%!$h%!$h%!$h%!$h%!$h%!$h%!$hp%!$h`%!$h P%!$h @%!$h 0%!$h %!$h %!$h%z!$h%r!$h%j!$h%b!$h%Z!$h%R!$h%J!$h%B!$h%:!$hp%2!$h`%*!$hP%"!$h@%!$h0%!$h % !$h%!$h% $h% $h % $h!% $h"% $h#% $h$% $h%% $h&% $h'p% $h(`% $h)P% $h*@% $h+0% $h, % $h-% $h.%z $h/%r $h0%j $h1%b $h2%Z $h3%R $h4%J $h5%B $h6%: $h7p%2 $h8`%* $h9P%" $h:@% $h;0% $h< % $h=% $h>%$h?%$h@%$hA%$hB%$hC%$hD%$hE%$hF%$hGp%$hH`%$hIP%$hJ@%$hK0%$hL %$hM%$hN%z$hO%r$hP%j$hQ%b$hR%Z$hS%R$hT%J$hU%B$hV%:$hWp%2$hX`%*$hYP%r$f%$f%$f%$fH`$H5qH81bAfcH0$dHd$dL A$H HH1MAIpI<t%ML_LTPEIDLELHHH=1t$H$t$P$t$X$t$`$t$h$t$p$t$xL$LD$xH$HT$pH$3H6H‰HcHA$H5H8bcHPHd dH{HHt H/uHKH[H@H+t1鞈H1鏈H+HCHuH1rH$H51H8dwHggdH9ggH^1gLZ$H5I: gH?$H5H8hf.H+fH fHHD$HD$H9@$ψH9@$ˆH9@$HňHgHg1gH+uH1g1gHqhI,$ID$hLE1MMh1hHmuH10hH$hI,$tE1iLE1i LH$H5HH811jHBHMXIČH=$H5H?鲍H=$H5H?jXHHjH=c$H5H?jH.H)H9u.HI#NJL9AHAA0IDWML)c11unHC(H1$]nE1IL9t3J4Ht1A HIIkH\Il1M1FH,$H5H5l1H;H H=e)>H3 H$HH5GS1H;H H=F)H3 =HǛI#NJE1L9ALMM)L1VHHt-I<t;H TH9HHH 雝1I<队L\$K; t " mH<$IBHD$ӟc1IƤ~I9ЃH#NJH9ЃHrN H9wHH9Ѓ øHD$nHHD$nHD$oHHD$oHؾ1HL-HH1I41HD$qHZHD$qI錥H|$PLrHD$EEE1EAAM9tuAs?Eu)Et0E@ut B|fB|LLINjUBLBLHH}HHHUJLJLHH)H)DHHD$PEEE1EAAM9trAs=Eu(Et0E@3t BlfBlLLIȋ8;BLBLHHHHJ|J|H{HH)H)DHpLfALSAtAt@SH$HH5l1H;[H H=)H3 51HD$8HD$hLLHL$hH|$HHD$IHt$@HHL9ILLHL$hHHLHL$hHHHL$HH׃?I4I 4HD$HHt$@HHI9ItLMIHD$8HD$h_LIMILLHL$hLD$IHl$8L H;l$4GIƃNqL$H5I81qH $H5H91qEH'rAH5$H9w H'D HC HCHC鲪H(HL$D$q|$HC(u H$HC AH5$H9w HH)HCHCHCD e遪H(HL$D$4q|$HC(u HJ$HC Lc(H;k Ӫ HC1HCHC AM顪H=5$H5H?^A!HHuE1AHH|tAHT$ H艨LLl$0LL֜sLLD$$$H$~$L,$Ll$0$AAA0Dt$0)D$@FALHI)K$HID6I1ItH@@IM^AH3AH#HL5K$HH HH9uuH3TjHLjHH HIo#1IH HId 1IH HI]xEc1IHIH H KHwvHtcHtPHt=A 1IIHHKDIIHSON Ad1IA'1IA1IHtvgHH uGAʚ;1IHH H ttHuZI@zZ1IHA1I8HuA@B1I"A1IA1II T1IIrN 1IH uIvH1II1IHt HtBHt(IƤ~1II]xEc1IrIo#1I^Id 1IJHOH_(H|~$ v$H=d HcHH)LHIvgEUM)t$ID$Md$(EAI|E]gH9]gA EUgA$u=1LTAM@gLHLieLEIL+EMD$LHLHeLMIL+MML$A4$LA$tL՘|~(HGt HH+HGL>AMfHLH)fHII\$HcLLEAUtRMD$ML$(@PAUK|fLܗAMfH9fIL$L輗AMnfAUbfH{. H{ H{ HT$ H d  A}HMHu(H|s1vkHmuH1D`kH7kLHHD uHKHs(H|u1kHmuH1kH9k1lH+uH1kH+uH1kHH9 tGL9'HT$HHT$HM9HKYHT$HYH(HL$D$]|$HC(tkH$HC wkHHߺ[1EHlHT$HfD$`uH$$D$`0 H|$`w$ MMD$ HT$HL$L$IڅtI[0&MMD$ HT$HL$`IL$JII9A@*4*HT$H#HE(H$E"HT$HeHu(EH4$"MD$ @MD$ cI[L] HH9i#HHM5^#L9t E t3L9HD )HT$HHE(HT$HkfUSLHHLD$ D$ b)D$ AuH[]HھH螔LLHRlHm@uH|$8#|$@uYH#H+HD$H|$8x#D$HD$uHD$H^#HD$H*H*H*USLHHLD$ D$ )D$ AtHھH轓H[]LLH(mHoHAA+HL$D$mZ|$HHC(u H #HK  +HT$ H迓Y-H/-HT$ H>-H]xEcL9EAApI#NJM9EAApHfsI TM9EAA [pA tOH9gsHT$L膝UsA$ t?H9oHT$LdoH8[]A\A]A^A_HT$LsHT$LΒHvA tTL9vHHLvA$ tDH9uHLHL$HL$uH[]A\A]HHL[ZvHLHL$FHL$HvH]xEcL9ЃvxI#NJM9Ѓ]xIvHM9I TM9Ѓ 1xE H9wH$HwH([]A\A]A^A_LD$AOL1IHAuNIz tKL95{H$H谛${IrN M9wIM9Ѓ wwH$HzHzH$H:yHH9у ~ tUL9΀LL龀A$ tEH9g}LLLD$LD$J}H([]A\A]A^A_LLlrLLLD$WLD$H]xEcH9уt}I#NJI9у[}HD1郄LHH[]A\A]A^H H|$HT$L<MMV@1H9-i#HMN8HM5Z#L9AF L9I.H|$HT$LHD$8ޙH|$8tZMV@I}.H|$HT$LZyIHH9v01Hl$L|$8+0M:1Hl$L|$+H|$HT$LHD$8H|$8uI-LE1Z*Ld$LLHAD$L*0+L#+HT$LH*L9Ll$L 0LHј/L ]#H5E1I9s)H|$H/uH|$H/߅ 驅HmʅH1鏅H|$H/uH|$H/vHmH1\H|$H/uH|$H/yCHmdH1j)H|$H/uUH|$H/FAHm1H1'H|$H/uH|$H/݈HmH1ÈH|$H/uH|$H/‰H+҉H1驉H|$H/uH<$H/|0z[0H|$H/ueH<$H/S1R*1H+yH19`H|$H/[ GH+H1ΊH|$H/Ɋ鵊H+`H1@H|$H/B'H+H1ދH|$H/ŋHD${HD$H#H1HmA2H1L1H|$H/u7H|$H/2#1H|$H/uH|$H/iHmH1OH|$H/uH|$H/l6HmWH1H|$H/uH|$H/9tHm$H1ZH|$H/uEH|$H/1БHmH1鶑H|$H/uH|$H/Ӓ青HmH1郒H|$H/uH|$H/jHmH1PH|$H/u|H|$H/+2ht1H|$H/uSH|$H/@3?2H+H1&靓H|$H/ 鄓H+$H1 H|$H/H+H1yH|$H/t`H+H1H|$H/wΔH|$H/i^UH+UH1E<H+H1,H|$H/ѕAD$钕1:HHL$H|$ H/uH|$H/=t HL$9H#H5)1H8Ŗ}1)H|$ H/ufH|$H/#RHԗH;HL$;t HL$(H/#H51H8F鴗tHL$h1H#H5q1H8ŘH|$ H/uH|$H/u˜H|$ H/u1高H|HL$m1aљHTHL$4H|$ H/u:H|$H/&鳙t HL$H#H51H86郙1КHHL$3H|$ H/uH|$H/鲚+t HL$H#H51H8邚tcHL$?LHD$PLD$HD$钛H|$ H/-1鏛HHL$HM#HKH#H5H8.1Prt3HL$ޛH|$ H/uH|$H/lH#H551H8O$H|HL$|H+BH1^T1tHL$鬜1)HD#H51H8[ H|$H/uH<$H/uޜH|$H/u1ǜHHL$1JtHL$>1ΝH#H5/1H8鱝靝H|$H/unH<$H/u_郝H|$H/uJ1lH;HL$Ü,錞H|$ H/uH|$H/t1鋞遞H|$ H/u1jHHL$鬝]t HL$陝HmuH1/H#H531H81W{+H|$ H/ufH|$H/`R$HEHL$et HL$RH9#H51H8P1FH|$ H/uH|$H/OHHL$TEt HL$AH#H511H8џ15y H|$ H/udH|$H/>PHCHL$Ct HL$0H7#H51H8N1H|$ H/uH|$H/(HHL$2Ct HL$H#H5/1H8骡1#HtHL$deH|$ H/uPH|$H/<ޢt HL$H5#H51H8L鮢18H|$ H/uH|$H/OHHL$$At HL$H#H5-1H8ãH~Ht$1HH!z*Ht$1HL!C*H=#NHHt8HD$Ht$H}HKLD$ HPHvH|$H/))H|$H/uH|$H/t1)1)HmuH1))H*1*H|$H/uH|$H/u|k*r*LLH߈In+It$I|$(,LLHV~LHL覈+LHL3~+LLHHLD$8JLD$ҢBHHD$L#H5E1I8KHD$ͣH|$H/(H+H1Ld$H-HhLd$6-H_#H51H: -H+_H1-FH|$H/A-LH߾[]A\A]A^|LAM 鶥[LH]A\A]A^j|L¾HZ|TH$#酨H|$xw#D$P}H|$Pb#uH|$HR#D$ mHL{H$%#$H|$  #5#1ǩH|$ H/uH|$H/HHL$bt HL$H#H5N1H8~H|$H/uH|$H/rHmH1iXHHEv E`.IE0MEAW-HHEv@.MEA/-MEA -AE t%H90LLcd/IEo0LLzH#H5'E1H81HE11Ld$a3E11L}Ld$G3Hk2HmuHWH+2HE1Bo1H5h2H|$H/u H|$H/G5 415Hm6H15AD$$6A H@A$6>H#NJH9҃<NIYLD$IIg9L4$HI9d1!EHUHHLHH<$#EHUHHD$HHD$11ELCHFLCH{F1EHԾFHHD$¾HD$]H:GD$HD$H1[虾1G荾1E11E1̪E11E1鿪E1E11E1鯪W11E1陪LHD$)HD$LHD$HD$麪HHD$HD$锪E11E1E1;1&ID$<Խu H{(#QH1}#lKLt$pLj#OHC(HT#1A~A^A>AAAAAAAD$SD8D8r|LSH$$AA9}IG\ IECA?wJFL$DD D$DL$DH|$#IcƄ<SZƄ$^AAGAA1AAAAAAAAAAL$DH2# X11VL$H LLfDŽ$ Ƅ$>_L$DH|$#1U11UAWHAVAUATIUSHcIILH8HH- L$L=HsHPMH$t5IL$Lu+H-H5>L=lH=U>IHFLFT$LLAׅu1T$LLAׅtMD$E1LD$ L9|$ vQKTO\K4K|HT$HL\$$NHt$H|$HHD$( NHL$(KDKLI먋T$LLՅoML$1LL$H9l$vwMTI|HH4$M|MtLT$MH4$LHIMH4$LHIMH4$H|$IHtMMdM|MtIDH낸H8[]A\A]A^A_ûHH9H鬦LLHHE1DIMAE1I9AMKT=I#NJLE1L9vE1H9ALL)ALHIHHIHH9\$H I1LM9@IH)IK*ҨHH7IMHLD$3HHLD$t?N<LHL˶H|$1HHLL$uH#LD$L#E1,LLHLL$~LD$HJD=L)E1L9tCJIH1]# HH9vQHH9v=1H|$HHLD$OLT$uH#LD$K鼤LLHLT$I͵Ld$E1M9tKIH|$HڹHLd$H\$uH#LD$H\$H~#LD$9AWAVHAUATMUSIMHhI9H|$Ht$wkIwHLLMtH|$LD$XLLL[HK<>HH H|$H#IhHT$IHl$ HHI)L9LM9v~K 1HIDHH9wILMMLLLt@LD$K7LI<CHT$ E1HAILMMLLLu1K 6E1HL9vKDIKDIL9wHt$ILMILLmtH|$JT=LBHHt$HLLLIDLT$HI)BMLLHILELLIL|$KDLLT$8LD$@LL$0Ht$(}BL\$HD$8LLD$@HT$0M<ILMLLT$HO 61II9vIDHKLHT$(LL$MLLhHt$I<LHHt$LAHT$LLDH\$ E1HLsKDIM9wHt$KLIILL3H|$HLAHLLCHh[]A\A]A^A_AWAVIAUATHUSILHIHI(HH.HHtjHLE(HtH.HHuH1#61MMHLLH6u H1#Ht H#ZH[]A\A]A^A_HLLH-|`LHs]LHi] I`HHh aAWAVAAUATAUSHHHxHNLNH~ L$pLV(HT$L\$HHVH$pD$'H $H$L$H$HT$(L$1Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@H$Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@L$H$L$$HD$HD$PHD$XHD$`IIHD$hHD$pL\$xƄ$PL$HtIN<IH=/Od:t%I~ LL)H$IKD:1J4IIɚ;wtI'w)IcwI EA(IEAI?BwIEAIA IEAI?zZM9w]IvHM9wH TL9EAA HrN AI9HL9EAA gIc M9wAIo#M9wIƤ~M9EAA0I]xEcM9EAAH#NJL9EAAAE)McN$H=#H{ HM5#H9t" tH9~HHp HH"fI]xEc1H#NJHLILC(L9wHII#NJI@HIII#HHCIxIcd IXLIMILcSYH$@@H$@HL$DŽ$4DŽ$dL$L$HL$ HL$PL$HD$HH5@;@~LkDt$'L+l$(L+,$AA D3LkVL$pE1AHMcEOHKI?BwpIHHI9HƤ~L9HHHH1Hd HHT$P;HIo#1IHT$PIZIHHGHH]xEc1HHT$PޔI#NJM9HHHLLbHϮH|$p#鿮H|$#AկHl#馭H$Y#D$p˭MWIG(J|b$'$HHRlEaHl$@LHa{AHt$@u9I_I(H|t)MGI9} ILLM)LLM)gHt$@HT$PLLLHL鼭H$|#$֬Ld$I锯HY#髬H$F#$鈬H$(+#$UA$t*111L6 t,AMHD$\1L^F 4$ uH+H1ьȑH|$H/Ñ踌鯑H諌%HH6F(L$L!LSIGDŽ$II9|NL$D$`uH$'#D$`u H|$`#HLHL$鯰L$E1ɹHMcEaHODHI9I}EHL$0L$Ld$`1H $A9gHk3H|$HLLDL$LD$I0HHHH$x3H4$ILLL4HLL5H#ILLLIHLLHyH|$LD$DL$HOALD$M@4D$`XD$06H\$0H#H LL)H$IKD"1JI鄵H59#I9w cH=dAB4oLH0IGIG8IIHD$H$#$H$ HƄ$  $ IG(u L#M_ A^H$#D$`H<$#HL2CH|$Xb#D$0H|$`M# HLD$TL%#5H|$(#$I]xEcI9Ѓ鲐I#NJI9Ѓ限H<镓Ld$PHLLMtMґHL[BOHD$H|$#H$m#$̒H$R#$ɒH<$;#’H$(#$鷒L#鱒H|$x#D$P驒H|$P#顒M@LH?LMA遒HLLIHT$0Ht$ HLQH+H1複雔H|$H/苇邔H~H\$0HKIHLLHT$@Ht$0LHHHL H|$ #鍸H$#$jM@H޺H?LQ@隵H|$`#銵H$#D$`gL#LH$#$)H|$p# H$]#$Ll$`HLL}KMH\$0bHT$HKHL$ HHT$Ht$HL$ IHLHt$0LML$ML$LL+L$0L$$L$IBIHDŽ$3I?L[HLLML\$(H|$0H|$LD$(H|$HLLXA$uRIT$ID$(H|t;Ht$H|$HeupHL>HD$KFHH>鵸H|$(#$u Lۨ#DT$LAA@D UH+{H1˄bH|$H/]貄IH襄鿓L|$HHL+>雿HS LHHIH|$P5#t$,1ɺHD+1H=!H|$x#D$P1H|$ ߧ#H$̧#$Lt$Ld$PHLLHtLl$HD$DHD$HƄ$HDŽ$Hl$DL$8L$HDŽ$ HDŽ$(HDŽ$0LH5#LHL$^HD$PL|$ uLD$hHt$xJ|t}L2HL$ILLLx,Ht$HL踭ILLLLd>$ u D$P tt$DHT$H߁J<D陾 D$,Aˆ酾HL$ILHH+Ht$HH7HD$D\$DD uHSHK(H|1A'E1II9uJ Ht1A HIMkHM*E1E1HT$H|$s;M.H\$H5#L|$IUHL˦ AM)L[L$ @+A@H|$11DIo(Ht$AoWH|$ PHl$HHkHkD$ Ao_T$8H\$(IL9/HL$0HL$(HHH?8sI~-HH9H|$HNgm1OHL$ 9E1醿I,$tE1mLE1茀]u H{(V#u HF#ImuLWbE1 HL$+HD$+|$+IF(u L #MN EL ImuLu H{(ţ#u H#AuI~(#Au L#ImLE1mImLE1RgHtI,$LE1\-IL$D$-HD$L$c1/H(IHL#H9H#H5H;(I.uL~Lt$MLT$IMMVL~1LHD$~LT$cH/u~AuI(Z#AuLI#H.uHY~d~u1VH@~$L3~HHD$!~HT$H=U#HHF#H9ZHXH"1 H}H\$gH\$]Imt1&L1}}yH}l11sHmuH1v}Hmt1H1Y}E1E1H|$HT$DAt*LMW@IHI9vCVHl$GL9%#LI8HM5#H9taAG t?H9L]H|$HT$DHD$86ALL$8t MW@L4Hl$H|$HT$DHD$86LL$8LH|$HT$D6+LE1HT$DLc6#HT$DL5H9H\$D H@I/tE1sLE1{c{dH{fE1H|$H/u{H|$H/u{H|$HtH/u{{H|$ H/u{{H|$H/uk{Hl$H|$ H/uQ{H|$H/uA{H|$H=H/3${1PH-#HH5g71H}|HMH=-D~Hu `{E111H=E#HtH/H1#uzHtH+uHzHtHmuH{zMtI,$uLgzH=#HtH/H#uEzH=#HtH/H #u#zH=#HtH/H#uzH=#HtH/H#uyH=#HtH/H#uyH=~#HtH/Hj#uyMtImtE1zLE1|yjE111E11E111E111E11{E111oE11eE111Y1HmtE11FE11u9HHf_1 HHtI|H9H5{a#LMI>IA2}zLEa#A:nHkHLkI}EHIRE\MKAIUdB|-hADT$BT$DT$_CT$`0HEHL9~IH/RIICR}MA#RL[`#A;PHT$LMTBHT$IAR}E H_HkH ?E1 C AAA tӨ@Hk0III1AMPDt]A_EuuENA~PE$IHL9uIFQA*QAeHWAHZvQ|AXQL_#A8 QH5^#> MAWAVI#NJAUN,ATIv8uUHJ*mI9tGL)LE1IIIH9AH)M4I$H(HHHsHHuI9wL)LE1IIIH9AH)MrIfL)I IIL_@IRI(HMLsHL9s HBL):I"HMLrTHmFL)HsIDLHFLM4FEEEE@AWAVHBAUATIUSHgHhHc IHD$XH,"MEILz HH|$HHINtLd$IMH|$`JT0Ll$IHT$f.INMWE1M $It$IIIML $ALH)MIDH9EILIH)L9L/IGE1IALH)MIDH9cEHIHH)H9L,)LFIIH4$HHLII^IFL;d$=Ht$Ll$HIIHD$PI!I!ILt$L|$ L,$Ll$HLO4 HLL$HD$0MdK\LL $M\1@I MDE1HLH9 $LIE1MHMIALH)MIDH9PBIIM)I9vIHE1LAII)MLDL9>BLMH)L9vHLIH|$]IE1I)AH|$ TIIIIH(LAAIMIL)LI(IVMIM)I(MML9H1IIIH9H)HH(E1HAO<LHL)aI(IwHHI)H(ILHL9HL$LLL>LH; $SHD$H|$8ILD$H|$(IL9D$0Hd$PLL$0II H)H HDMMI L)II MML9HIHH H)*H HAEILH L)}I LHH\H9SHL$LLHLH9 $QMHI(LIff.HMHI"LIHI"IL#fDII(IIfDII"II;M?I)HE1IIIH9AH)MI@f.I(IMsIMuL9wI)HE1IIIH9AH)MTIKH)I HLH@HrI)I IMIH(HILsHH9v H2H)*Hh[]A\A]A^A_L,$ImE1E1AMLI΃IL)IIvI9sH\$HL)LH9HIMfIE1HI)AMWHIHH"IAAHIII)H"ILHM) I"ML( H L9 LH9HIMfIE1HI)AM'HIHH"1IHIII)H"ILHM)) I"MLl H) L9 ML9HHMff.HE1HH)AMHIHH(E1HAILHL)I(LHHH)H(HHHH9IrL9I)HHMRII H)H 1H@ILH L) I LHHH9IL9>)H)HIM'II H)wH HDMLH L)I LH9HIZI)RH)HIMII H)H E1HAMMI L)I LDHMYH9PH6H).I)HHMHH H)H E1HAILH L)ZI LDHIHH9HLH H)f.HIHH(1LHIIH)H(HMIL)I(ILML9MzHIHH(LAELIIH){H(HLHL)TI(ILTH]L9TLnDHIHH(E1HAILHL)LE1H(HAILHL)LH(HHHH9LwgH"IHf.II(HL fDHH"II7fDI(H(IH>fDI/H"IIJfDI;H(IHfDIrH)I HLH@HH)aI HL>H.HH)DHH)H(HHHsHHu H9H){I(IILsIH9v MH)I(HILsHH9v HH)I(HLsHH9v HwH)oI)L9D/T$LH|$@螆Lt$ LT$0HD$XHD$(InILt$8LT$hHHl$`Ht$(H|$XH詡HHHI舟H|$ HhLl$0L\$8LL$hO|L\$`AKHD$L)tzI?HھI6ILHHD$"HHHD$ LHHIHL$LD$IIOMGL9|$ff.I?LHI 辞ILHHD$語LHHI虞LHHI舞LT$ILMwHIMWiILHHD$ULHHHD$BHLHI1HT$IHD$IWIGL9|$AHl$ Hl$8H|$(u/Lt$0H\$@MH9MPIW[mHc=AWAVHAUHATUSHHIH)H|$xHH牔$HH|$0H≄$HT$@HHD$pDLl$xK|I9H$sFLt$pL|$0L$$MHIHLLLII9rL$$LLc$L;LDK耂H|$@HD$`DLt$0Ht$xIHHI!H!M~HLnHL\$hHD$IHT$HH|$(L|$PLt$8HD$ Ll$XHL$`Ld$ AHl$hfDIIIH"E1LAMMIL)I"IMMIM)I"MML9HHIH)HHI9HH"HAELHHH)H"HIIH).H"HHHoH9;M2I,ALHHIE1II)AH|$IIIH(1L@ILHL)I(LIIH)AH(HIAMFH9=HHIH)III9IH(E1HAHMLHL)I(ILIIH)H(IILML9IHLLH|$0HOLd$8Ld$PLL$XHT$(KIAHD$H)ШtgI?I־H褘ILHH$葘HHI~LHHImM~M~L9|$L$IMI?LHI >ILHH$+LHHILHHI H $ILMwHIIOILHHD$חLHHH$ŗLHHI贗LL$IH$MOIGL9|$EHD$ HT$HHl$ HT$(Ht$0Ht$8H9l$@+HT$0Ht$@H|$x臃XH\$@H9\$0t-H|$p##$HHHD$pL|$xL$M9s8$Ld$pLl$@HLLLIM9rH|$p1}##HT$@Ht$0H|$xقHĘ[]A\A]A^A_HHHI>LH)H|$II H)H HAALHH H)H HAIEIHH9kHbHE1HII H9AH)MH 1HLII H)H HHH9MIhH"HHDf.HI(HLfDHIE1I H9AH)MDI;I"IIM#fDII(HIL$HH)*H IHH@IH)IH(IHsIH9v MH)H(IHIsIMuL9wI)HHIHIH"IHr8H9M kI"IMrML9@AWAVAUATHUSL,HIHT$<1H|$HHD$ HHD$@I9v T$LD$ ILD$(L\$I1M'I+HHT$HHL)HHDI9LH$L;,$Ht$H|$L@HHrXL9Ht$ LLHrZI9bHt$ H|$LHL)@f.L)룐f.L),$kL)HD$(L)I9HĈ[]A\A]A^A_Dz$B$L %IcLHSHGHHHw(I#NJH>LOM9AHLEL^H#NJISH9A0HHVvlEtgLFI#NJMPM9HLVv?t;I#NJLIM9ALH#NJI9H[Df.L#HpHS L9ILH9t H9HK(HHCHtHtE1HAEtE1HAHw(rqE1HAHWLW(1A IIH@H21HHH9E@AWAVAUATUSHXH-#HD$H|$HHHl$HHl$@Hl$8Hl$0Hl$(Hl$ Hl$Hl$P1HT$ RHnHL$0QH v;#H\$@SLD$PAPLL$`AQLL$pLD$xH0H|$HH9HHxIc L9L|$@L\$I9ICMwAH5C=#I9L9=;=#L;=6=#L;=1=#L;=,=#L;='=#L;="=#L;==#LAH5<#LH5<#Lv.H5<#L_H5<#LH,L-d<#HHItLAuH|$8L|$H9Eg4HIc J0L9H|$0IG H9HL9H|$(IGH9HHH|$ AGPH9HAII9Ld$AG8I9ZID$1L1HI(L-,9#1E1LL%I} H;9#H=9#H; 9#H=9#H;%9#wH=9#H9*9#lH=$9#H;/9#aH=)9#H949#VH=.9#jH999#H 9#tH H9LH;Au@AI M9ILd$A\$(Ld$I9Mt$ALE1HH2L-7#E1Df.LLI}HH;7#}H=7#-H;7#rH=7#H;7#gH=7#H;7#\H=7#H;7#QH=7#H;7#FH=7#H;7#L 7#tI I9I;Au@AAIA L9AAHt$1Dv,HX[]A\A]A^A_f.H i6#$@H y6#@H 6#@H 6#@H 6#@H 6#@L 6#4@L 6#$@L )6#@L 96#@L I6#@L Y6#AiE1aAVAKvHYHHt$HF H|$0H9t+QH;Hc H92LT$IBH|$(H9t"HH9L\$ACPH|$ H9t8HAAIM9HT$B8Ld$I9MD$ALHIe1AFA;A0A%AAAA1HEHuH #H5 H9@f.ME1Df.LH(\(HHHHHHI)MMMLHI9IHLTHIGwIId LHHHLIM)HI)tSL II HtCHDIHGt4H\IH_t%IHHL9uDf.Mt I1M@IDf.H LH$ HHvHH$HI)ff.IHLH4ׂCHHHi@BI)LHKY8m4HH Hi'I)]f.LHS㥛 HHHHiI))fLHaw̫HHHiI)f.IJLHBzՔHHHi€I)f.HLI4ׂCIHLi@BIM)LICxqZ| HIHLiIM)f.Iaw̫LIHLiIM)IBzՔLIHLiIM)fLHЄK8IrN HH)LIM)LI3"[3/#HIH%HII)kf.LHCxqZ| HHHHi I)yfILI TIMH!LIM)LHIGwIHHHd HHI)fLIKY8m4IH Li'IM)LHS㥛 HHHLiIM)DLIS㥛 I(\(HIHLiIM)LHIHH,ILlIM)*DLHЄK8HHrN H)HI)6fDH3"[3/#IHH%HI) fLHBzՔHHLiꀖIM)LI4ׂCIHLi@BIM)yfLHCxqZ| MHHHLi꠆IM) I3"[3/#LIIH%LIM)I$ LIvHIH$LIM)f.HWx/e9IHo#H3HI)fLHS;\HHH]xEcHHI)fIIQI4ILHKY8m4HH Li'M)MI)fI I II͕PMB LI@zZIH*LM)MIff.E1H!LsJ|A IE1IJ|AIIJ<tAf.LI(\(HIHLH|$XH9LT$LлLT$@HHHItILLLl$0Ld$H|$0m @|$0H\$@I_Cy 5H|$HLt$XHD$8LHH4IIL6HLN BL)uHbLeMfAWAVAUATUSHLF(LvK|HIHvH6P^Cy IHHHHHH?HH)L NKL9WHH94"L} HHM5%"L9E ZL9KH_Cy 5LMHLM(HHHHHFZEHVLRM9At,LVHLHaRHuHH+uHsHHFEAI#NJt9J LQM9At NJIL9Euf.AUATIUSHHIHuHVHF(H|t'H-t73HLLH[]A\A]A}$t*LHHt#YLLH[]A\A]LHHϐtـ3Qu EuX[]A\A]f.AUATIUSHHIHufHVHF(H|t HmHLL[H]A\A]A}$LHHH9LROL҃0AHJt\I9IRAL,0AHNhMt5AH9HJO A0E9HcHNOM|fLeHHHfuHT$Ht$WH8[]A\A]A^A_MEwIGMANՁEwIGf.IDv"HCIHH9NHD$ IM)HIIc ILI9IL9L[HL$M9KI)L[CHMEwIGL0f.DvI1ECDqu$A.u)EgA.CDaMDIEMEMAw@ak@AasSit?It:1E1EL|$ HT$HP$f.Aw@nt@NuEoAftAFuA^H~Aw@nt @NjEWAat AAUE_Ant AN@Ho~A}Ht$ IgHI(8ZLd$L|$ Mct$(I)I$HD$L)L91LH6P^Cy MHI?L)H4IHAw5EO,HU0AHN7AwBK LRL҃0AHH,MJIL%LZHLCAWirAw@nTA@i6Ao@tEGAyAMELMk A0IcIAMMA@nt @NHzAHt$ I"dHI8Hl$L|$ LcE(I)HEHD$L)L9U1XLLUEAHC+IL["HSAY@T@I@NIAWAVAAUATIUSHIMHLVHRL$ H$HL$(LL$D$`0I9HD$hHD$pHD$xHDŽ$@H$HD$(D$0HD$8HD$@HD$HHD$PHL$X.X I]I}(H| IMILZH9 HvHHLI|2H9 L)LT$`LLLL$H\$xML$Ml$L$L9Lm H9"HHU HM5"H9E H9E$HE(HH$IT$(LH$AE8MMD$ L9IIN4N94NHL E1LH+AI#NJAIHL0LQMM)ML+BM9H#NJIHL@ALqMM)L+jM9AAs I#NJMHLhLAMI)L+JM9AAs I#NJMHLHtRAI#NJIJD$ H]/E$$ADd$ @f.LLvI#NJMjMAMDI9L,LH9rgI[HL4tODf.H TI9AEI fHHH9AE HHVH9HsLHH9LsL,L,HH9^fDH]xEcI9AEIhfMCMH]A DuLlIɚ;=@f.E1IAIfH^MMLWL9H9L"HHW HM5="H9+ H9E$HE(HIL$(IU(LH$AE8AMD$ KHt;NtNDM9M9s#D$ ILHHLMff.H<fI#NJM9MII@HL@/E1pf.HJJIL9E1NNII9Jf.r>H,HHH9IdH9 "HHM5"H~$HT$LHDT$;mDT$IV@LD$ I}ADT$7Hl$H|$L|$E,L*A@I#NJHl$LL\$IMV@MI4J<IH|$(MD:LLH)HIHHLHH'HHLHYHtIIHLHH'L IHHLHH'HHH}f.HwLH&HHIHHHLH'HIIHLHfLH~IHHVHFIHH~HHIL9HH{HHu:L\$ HL$1A4I2HH#NJH9I2jM9Ii$LD$(IK<IDd$7Hl$L|$AFIN@IF MN0D AFJ\Hɚ;wwH'Hc@H AEMD$IIH4HqLLL9 "MN8HM5"I^(L9HT$LHt$PH6fDH?zZH9IvHL9HrN AH9rIL9AEMC TH?BHA 1HLBf.Hc H9Io#L9wjHƤ~H9LBfHAEMEI TL9LF HAALGI]xEcL9AALAgI#NJI9HHLGKHbHZIA1H0I Ll$LHLq^Ht$PLHlHv8uHHI2v&MMXM9MM9M9My|6L9="LMN8HM5"L9AF L9MIM8HRyAWAVAUATL-"USHHBL9u"HHAHD[]A\A]A^A_HALHIH٦AueHStLHL7E1HHEAEt!H=#"HRH51H?֦|H "HHMhH]AHUf.SHHH5D1H HL$HT$]HT$Ht$HٿtwHT$HHٿtbH="+HHH$HL$H{HPHqOH|$H/tH<$H/tH H[ 1H|$H/u1ѐf.SHHH5d1H HL$HT$}HT$Ht$HٿHT$HHٿt}H="*HHHT$H$HzHpQ1҅H{1ɉH|$H/tH<$H/tH H[H<$H/u1H|$H/u1ff.H(HHHt$'t!H|$GuH"HH/tH(1H"HHD$臠HD$H(HHHt$t%H|$GH"HH/t H(1HD$0HD$fUSHHH51H8HL$ HT$(D$ 财HT$(Ht$Hٿ5HT$ Ht$HٿH="")HHOHD$Ht$H}HKLD$ HPHvBH|$H/t%H|$H/t@t$ H/uOH8H[]=H|$H/tt$ H/1H|$H/u1AVAU1ATUSHHH5kH0HL$ HT$(D$ ~tHT$(Ht$HٿUHT$ Ht$HٿH="'HHHD$HT$Le@LrLhueBu_LLS|1҅L1ɉH|$H/H|$H/t$ H.urH0H[]A\A]A^HKLD$ LLLdu!LL{1҅L1ɉ3H|$H/t8H|$H/t&t$ H!.tHmu4H1lxb[H|$H/u I1S1Lf.USHHH51H8HL$ HT$(D$ ğHT$(Ht$HٿEHT$ Ht$Hٿ&H="2&HHCHD$Ht$H}HKLD$ HPHvH|$H/t%H|$H/tMt$ H-u*H8H[]MH|$H/t#t$ H,tHmu'H1!H|$H/u 11ATUISHH D$ E,HH(HIHt$1HHHt$1HLH="%HHH|$HT$HKLD$ HwHRHx/H|$H/t'H|$H/tXt$ H+uVH H[]A\(H|$H/t,t$ H+9H|$H/>Hl$Hl$@f.ATUISHH D$ +H H(HHt$H1HHl$txHt$1HLt|H="#HHHD$Ht$H}HKLD$ HPHvrH|$H/t'H|$H/t#t$ H*u0H H[]A\H|$H/lHl$Hm.H1ǙDAWAVIAUATIUSHH(H~(HvH|HIIL$H9H)H6P^Cy HHHKHH?H)LHN BL9HH9-"ILM"I9L[ M9HHH{(LX;HkIA4$ @3Md$LcH(L[]A\A]A^A_AA? IHC(HCHCHA,$ @+MD$LCH9?"ILM4"I9L[ M9tf. M9HHH{(L|IHkE$DAAE DIt$HsH5"H9s HC(8HCHCHLLHE1\AIHL$HD$@|$HC(uL V"LK LHHLT$ūMl$ HL$II96A$ 3I9fDATUH V"SHHHH׻1HPH-x"LL$LD$D$ Hl$Hl$7Ld$I9N<'HHD$zH(TH|$o@oH L9oP0)D$ )L$0)T$@c"7$H="D$DHHHpHL$ HSLD$  ut$ H|$&HPH[]A\H|$ It$ H|$H9t!D$DH=,"gHHHpHL$ HSLD$ tt$ H|$Q&uHmuNH1蘕_I|$H5g"H9V H"H51H8處 1f.AWAVIAUATIUSIHMH6Hj@zH9iHCH HH)H9}IT$I|$(H|IT$It$H)HH9NHxdLLLƹ'ImImHH;kHKHH+ H9 HLHL[]A\A]A^A_(HLLLHI{$ImDC$L OcMADf.HwjMEIEAA@M\(L9[dL{IL+;M9PE &HLHL[]A\A]A^A_lff.IEHIm(I#NJHuLFM9AHLEEL]H#NJM{I9@HL}vp@tkHUH#NJLBI9AHLEvBEt=AI#NJN|IM9#N|H#NJI9cLx@MEH3L9-MImML(L;KLSII)M9A@HLH[]A\A]A^A_LH1HLHL[]A\A]A^A_MEHAEgMEA@ HAEDMEA@E1HAE"MEE1HAE1HAMHLLLKXt'X[]A\A]A^A_YLL[]A\A]A^A_JA$tAtAXLLL[]A\A]A^A_IVM](AMEA@.A#IM(1ҿ HHMHNHDMEA@HHEfEaXJDIL9H-C"HpI} H9HLH9eIU(LHIE>MEL;ImD@AVAUH "ATUHSHHH´HXHf"HD$D$ H\$ H\$P1LL$(LD$ZY`Ld$I9Lt$ H=y"1LߐLl$ MLl$ImAoEH|$)D$ L9AoM )L$0AoU0)T$@JL%"LEM9H\$HEH{L9HHIHSHuHxLD$LHmH+$Ht$H|$veHPL[]A\A]A^@f.H5"L1KLMAH="HLHHLl$H\$H{L9H5"֑LSAH=e"HL*HHH=G"HIHSHuHxLD$LHm_H+t$H|$ZDf.HL"IRH5x1I;^HmE1H-|"IQH5I1E1H}+xI|$H5"Lt$ H9It$ LH|$MH9tx9Ll$D$DLEL%*"M91H\$HEH{L9xHAHIOHSHuHxLD$L\HmH+Ht$H|$ImLE1SLl$HEʏHC"H5E1H:YFHIHD$H(oLd$f.USHHH5c1H8HL$ HT$(D$ tHT$(Ht$HٿHT$ Ht$HٿH="HH&HD$Ht$H}HKLD$ HPHvH|$H/t%H|$H/t*t$ Hu/H8H[]H|$H/ut$ HtHmu H1̊1H|$H/u越1fAWAV1AUATIUSH(H=V"HT$D$贋uH\$HH+ H="HHLxAD$LsMl$LD$uxLLLL藾t$HH(H[]A\A]A^A_H(H= "[HHttLxAD$LsMl$LD$utLLLL_HT$LLHHT$LLD$Y{HHn1UHPdf.AWAVAUATIUSH(H<$nHFIHNփHt$   H.H$H[H9HȺHLHHHHL"HH:A$I9f@@ @ŀ MM9l$M|$IIL$(Jt&Hɚ;H'\HcH 1ɺ!M|$LHLI+t$HDd$ EL9  H,$L)LufD@,M0L9HȿILHHHH}"HH A$@f.LG-M@M9l$It$IML$(LItHɚ;NI LD$IIrʺI TI9҃ Ic L9?Io#L9IƤ~I9҃MH?Bv#H 2H҃!H҃H҃I?zZL9HvHH9IrN L9HH9҃ 1HM|$IMtIt$(1ɺHJ4IH?BvNH wH҃H]xEcH9҃:I#NJI9҃!H҃^TH҃CI TI9҃ *Ic L9w(Io#L9w2HƤ~H9҃I#NJI9҃H]xEcH9҃ATUHSHHHHt$pCPHL$1HHqƒH|$HH/HqHL$$~HHo@ T@jLE0HMLr"IE1IOOIM9rKM1t E"D"t A:f:HtA::H<$ "HH[]A\1z?fATUHS1HH="Ld$L{H\$HH+[P1HuLƒqHHHLd$}HH{@ H @vHC0HLIr!I1II4H4HL9rL LE1@uF@u0uH|$"HH[]A\@B C DFfGI:AA9HHtH(KP1HuLɹƒnHHHLd$|HHt|@ H @wLC0HMMr"HE1HK< K<II9rOM1t EEtA, fA, Ht E$ E$ H|$"ff.USHG u4HHt_H=|H+HHwHH[]èu9uOH=[zH1HtH{HmHuHvwHHz"H51H:wH= {zHfDSHH HtXH(tXHP1HsH|$ɹƒH\$HlH=H1uHHD$"HD$H [HHD$vHD$1HsH|$xPƒ_H\$HH=JH1`uHHD$R"HD$땐f.AWAVAUATUSHGD$<h Aո0HHILwH-"HI"HHHHHH`י"HHC(UHCHCHCHk AD$AoGAoO AoW0)D$@)T$`)L$PDl$dIT$ HQHT$-L$AL$L$EA AG)$D$DEgpD$Ƅ$;tHD(E}A A^ fDŽ$ D#AT$Ā E1A^ L$E$EZA A  E,$A0N *iHIBDjA<$, A<$.QE $D΃ߍF<A%@Nm A<$C <$ Ld$XM%L$H1LHHHH A L$H1LIIIIq HD$X HIc L9$H$MNƄ$0HDŽ$HDŽ$HDŽ$HDŽ$@H$$ IDE1BDYD$A  A+| AF <$R HtH$H"H$H[]A\A]A^A_IL$H$E$$D$ITff.ALL$xI#d L9LL$rLT$EAHՀ A HD$ ArM?MrADwHtwEJMrCDOLtcEBMrCDGLtOAJMrADOHt;AzMrADHt'ArMrADwHtIECDOLuLD$MM)׀.L|$(M<HE M)8L](A;E1HD$xUMAWHL$8MHt$(H|$0LL\$HLT$@QHL$pHyNHH$Y^IHT$0LD$8MUAWHL$8Ht$(H|$0H|$  "XZqLT$hL9p}1D$CHL)L\$`I@|$H}H|$xHLyHL$CLIHt$Jtf|$CHHD$xP|$ML\$`@z=@<:WÀLE1@=MLHt$0LHLT$8L\$ HL$J<LD$(GbHL$LL$(1L\$ LT$8LD$0HL91I9EHLH$ނ"$ZLL$L\$"cH|$LAALL$OM^H$I L`H$A$"PGL$H$F"Ml$IL$AT$DQ]H$IL _A<$H$"L$@ImLHD$]HD$<%:L$HT$DA LDT$L"H$DT$MH$AHcAuIQIA(H|D$A5Ml$A aH5JL~_HIt H\HIHP H$H|$XH5E_HHD$t"H\HHD$ҤH H$H|$XH5_HIt H\HL` L$IH$oH-t|"H5H}1\1LT$M"Mt$Ld$MM2LHD$ \HD$Hc H9zL$L$LHHDT$L>MDT$W|@<HI,$nLHD$[HD$WIc L9;MDT$MLE1M9t!E1M9u ILB|B<IL|$`Hl$~\$Lt$Lt$x\$If\$`)\$`C>(LLLIL$L$L$L$EuRMl$Ƅ$zL$A $Ƅ$$^A|$H0IMD~|@0xL=Cz"H5:I?dZ11L$A:uM\$AgAGL$A<$NEDD$YHPH$oH$$9wL$AL2HHD$H H$wAM4LHI.LP L$AIM)xHpAH$$HCI9V(L$L$LHDT$L<MDT$iIy^L$L$LH1DT$L:MDT$,$zH$4<%eA \LE1D Ay@t A HIMD$L$E,$MD$$HKAH$;@$H|$LWH|$]Aʀ{HH$H\H$I|$;\HUHHLH$B _fDŽ$LAHIHI)1A@H uHuH) Ƅ$11L$DD$EH v"H5ex1H9W1~L-v"H5xI}VHv"H5{H:V1z6@AWAVMAUATIUSHHH8HJLNJ L9IHT$(I:L$$Ht$H@H$Ht$ILh(Lv(II#NJIJ*mHT$PIL\$0IU AM4MtLD$(HI9w;HK @f.LIMQ(LG(Lk(II#NJI HHIH?IHIM!IHJ*mIMuLD$(LIfAUATIUSLHHLl$ D$ MLLHyD$ EAH[]A\A]f.AWAVIAUATIUSHHHh2HRM]Me(HD$`D$00HD$8HD$@HD$H@21HIHD$P@LL$ HD$X@|$IʃH9LNK|@t$LT$IEHH)I+FtI;M-H9IVMcI)M9L9L9%q"LHK HM5p"H9 iH9EL9I~Lp"L] L9LHML9E L9HMEIF(MM(L](Lk(IH8I1HIIEI6L[ M9MLM9 LD$(M9fLcH(D#HCLkAD d$D#M9/Lt$(IL95o"LH] HM5o"H9E IH9HLuD}D$0H|$AD |$H}D}s?Hh[]A\A]A^A_@I9UL9I~cH9=Do"HHM HM55o"H9E H9+IHpIMI~(MM(L](Lk(HH?DI1HIEIIML9%n"ML[ LMn"M9mLcHLD$(3HC@ t$@3M7L9sLt$(*IxL95fn"LHU HM5Wn"H9tE H9LuH;DMLT$LUAD L$DMD$0fDI9fH9}I@f.H9LLH tit$11HdDf.LcHLD$(DHCLt$(AD D$DM?L9{L\$ A 1Hߺ1H MK|CII5N K| !MbIK| IIQf.ILAH1HH#NJHHA+HHHHt`Ht>HtHHIHIDHHHIHIDHHHIHIDHHHIuHIDHHHIYHIDHHHI=HIDHHHI!HIDHHH@HILQHIDHLHKHHKDHHIHIDIJHHIHIDIJHHIHIDIJHHIhHIDIJHHILHIDIJHHI0HIHMtIJHIIbH)H"LT$0HL$ LLLT$(kLl$(Ht$HI~LfI)L9~ I9L9% j"LHK HM5j"H9LD$ AHM(J|xIIMeH)HL$ LHksLd$LeLLH OLl$t$11HLmAHHIDHHHHLD$0HL$ HLLLD$(jMMLt$(MaL+d$HM9} I9L9%h"LHK HM5h"H9IIH|$(IN(IU(Hu(H{(MEk'MLk(LD$(ILHT$ H? '6HT$ HLt$Lt$HT$ LHLD$(ݟO"HHS HM5/O"H9@f.MMIIL$I}(LC(HH7I|$(HE1HS 2LE1IHAE1LHIHHIHLIALE1HIHIJALE1HKLIHIJAHLHHIKwfHuHH<I|8UHf.H9-N"HHM5N"H9E1ڃHkAHD ш MLk(IIuHIHHL$ML)HD$ HL$HK}eH$LHyT@IMJAM.KHIt$ HHHH[]aH|$H/uQH|$H/uAt$ HծH|$ H/t,H|$H/t1 1H|$ H/u1mAVAUIATUISIHXLIHc HHH`HLHD$`HD$HD$HD$ @HL$0HD$(HL$8H\$@HD$HKHt$PH|$XxyHHT$`$0HHD$hHD$Ht$0HGILHLLHLLG$ȇH`[]A\A]A^IL9tHHHT$`$1HHD$hHD$pHt$0HcGILHLLHLLAG$tMtC*fAWAVAUATIUSH1H(H=c"HT$D$QdLl$MImHEH5C"H9I|$HEH9II$HHʆL@HLpLL$M}IT$HuL@@H@M@0H@ LH@(H@0LH@8LL$HT$LL&FHmI,$t$Lԫ]H(H[]A\A]A^A_H(HEHEB"H9Lff.H5)B"Hq)HUSH=B"HLnHHmI|$H9uI$IfH5A"uIL$H=A"LLlnHIH=A"dHH?HpHLpH|$M}IT$H@Hp@HuI@0H@ LH@(H@0H@8H|$L[HT$LLDHmtEI,$I@HELIt$L/LSHwL%n9"I$L%`9"I$HmJYHI#E1LIL(AWAVAUATUSHLwItHL[]A\A]A^A_HHHT$HD$CHt$ H|$(HD$0HD$8HD$@HD$HHD$PHT$XHL$ D$`HD$hHD$pHD$xHDŽ$H$HD$( Ƅ$HDŽ$HDŽ$HDŽ$HDŽ$H$D$H=;"Hc IXLIIIH$H$L$HDŽ$KL$L$虎HIbH=N;"聎HH D L[ Lh(AMD H@Ld$M]IEL$HH@LLAHL$0H$MMHLHL$HsLH AeHXLIHEfo MLLHHH$)$!LLHcAHT$LMHH}LH9L$DEDKIEAAHEEtIIIMDuAtTt`Ht Et^tjLcME1 ukHLi/f.I(9"AL9"H}({9"EHl9"HEIH@IHH@MHIIA D IULd$IEL$H@LL?HL$0Ht$`MMHLHL$HsLHDeHXLIHEfoMLH$LHH)$$LLHf?HT$LMHHLH7L$DEDKIDAH@E L=B4"H5{6MI?XAVAU1ATUSHHH58H0HL$ HT$(D$ HT$(Ht$HٿpHT$ Ht$HٿpH=:" HHpL`HL$HD$LkLt$ LHPHqMLӼLLL>H|$H/t+H|$H/t0t$ Hãu5H0H[]A\A]A^ H|$H/ut$ H莣tHmu H1H|$H/u 11Df.AWAVIAUATUSH H~(LFƄ$0HDŽ$H$HDŽ$HDŽ$H$HDŽ$ @Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@HDŽ$Ƅ$HDŽ$HDŽ$HDŽ$HDŽ$J|HL$xH$H$(H$H$*HHVLNIAAEHLLIHL$*L]M} L$H$H$H$PHDŽ$ IƄ$HDŽ$L$HDŽ$HDŽ$Ld$L$L$H$L$L$$H4$H|$h)HmL$HH$XA HT$xHXLIIHc It)LH$8H$@HDŽ$HKH L$PINH$0LD##MnL$0HL+$I9Mn%Iɚ;H~I'/Ic}1I @fMnfI*L)AH*Y 4f(\0^f(L,HIMMI9H$1ɺ1ImMH|$p_L$IL$LT$ Hl$pLÐL$IL$KLHH=ɚ; H=' HcsE1H AIE<$ID$K4Ƅ$`0HDŽ$hHDŽ$pHDŽ$xM4sL$HDŽ$@DD M΃L$L$P(H9ID$(MD$HD$(LNL'Ml$L+$M&IL$H$0H)IM^M)IL\$Ll$X5&LH6P^Cy HIHI?IM)K4IH3"[3/#HHHH%HH)IIKYLWAMlIM9KNMRHT$H3}@@LH|$ H $LHIL$IvIIAHI,J|IVHH|$pLD$H$0H"HHb$xHL/iHI[ZINMGMO(Iv(HLH$uH$ "L$$H "L$L$$LMvMw3$L$ IAӈ$IIv(I(vCIL$M9YIMCtYHLLH(L$mmIL$KHL|$pLl$Lt$ HL$0MLLLӯuLLLLi$$7Ll$pLd$H$0H"1IMLL$(LHLf$HZH$T "$`QHD$0H|$ DT$(HL$HPʬDT$(HL$TLIODT$8H$`L$0H$LLT$0H|$H肬gTMl$(L$MD$DT$8HD$L\$Ll$(LL$L- "VL$0H5u "H$Lt$0LIHH$ ML)H9IHMH9SLt$ D1D1LL7H$0LHVCIDT$SHI(IU(1MEH$(vSLcH$(DT$N1ɺ1Lr7LD$xA@R1LHt$x@1ɺ1L)7MDH|$ D1փӟ$LkL$`DT$H$LL$0IH$LLLT$0N RIT$H5 "LDT$lH$0H|$ H$LLyM踬A$D$tUAu8D1H|$ ƃH|$ H$L5H|$ L~H$@D1H|$ ƃHJH+$015$LIL$0HLd$0HH$0H\$0$H|$pLD$H]"1HCf$RHHTHTHTHƤ~1HH:HUH/UHAUHƤ~H1HHT$P[HuAWAVIAUATIUSIIH8 &HVHF(H|AN,AoAoNAoV )D$@)T$`)L$PD$dUH$0L$0L$0L$0I9Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$ @H$(Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@L$Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@L$D$p0HD$xHDŽ$HDŽ$HDŽ$@L$Hl$pLLHHl$קSIH\$@HL$&$M@M.ND$` NRND$00NH( []A\A]A^A_Af.AIH$H|$`N HL$H|$ fI6HAHHT6LH$LH$H$A7H9oH4$ILHH苀HLHHV!ILHH%ILHLL%AIL9t$VqH4$H|$ H)HHT$(111L[t`Ff.AWAVIAUATHUSLHIMHhLHD$`I$0LHD$HD$HD$HD$ @HD$(] HI~I9}Hc IM}ELl$0L|$LHXLIHHT$8HL$@LHt$PLLHDD$\HD$HKH|$0HD$XMLLHH*vLLHlHLHH+$jGsGDL$LAA@D MHh[]A\A]A^A_@f.AWAVAUATIUSHHHI8MPMXLD$0H$E@,L$,H$LbLbLL$Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@H$D$P0HD$XHD$`HD$hHD$p@HL$xH|$L$L$D$Ld$EHDŽ$L$DŽ$IT$H$H$LH|$ /FH$Ht$HvH>$HD$FH|$D$HwFHT$Ht$ HՏqFH-LL$DIHI#NJIJ*mHt$HHAH8>HKHs(HttIHHHD$8跃LL$8uLL$8H{(~!LL$8L$#L|$HH=J!LK(LC DLHcEAID=HHHD$8LL$8눋D$Ht$,HNgmHHH{(v7IL$HL9Hu= IM,=L$HHEI@AWAVIAUATIUSHHXDH|$LD$ADEAHr(HzH|Hd?HH?HHE1HHH,HH9PLCAeEMgIo(J|8E1A)AvH|A1H5!LD$ kIw(EH|$ HkHkAoGHt$HHt$AAoOAPHL$(DT$ D$8HH9`>LD$0LD$(HD II?AE8I~lHH9ELL$H|$MDHLHX[]A\A]A^A_f.E1HHMEHHHIHHHHI9xHI(\(HIMEHHHHHL,ML9?HIHHHHHHLML9f1E11EuIMG(I|qA3ADAA@!HSHC(H| H|$1ɺDL1H|A@H|$11MVM+IzLT$;kHHL$H9TEt LL$H|$MDHLMLl$LL$MF,LHLLwAEuH5g!LAE=HT$H|$LEtADHT$H|$LwH?m@1AcH`>IWH|$Ll$ LHMHt|$ 4I4IWHHHT$HT$?I,$IuLMu3H=!+HH3H=!*HI]3HXLIHHl$,Ld$0Hc IHL$@Ht$P11HHD$0HD$8LD$XHD$HKHLHAEA KH5$!I9v IF(35HAL$L蕱f.=Czw.f. 5ClHIx.M,H=!HH7I/HD$LpLB!I(3!AxIL|$oH5(!HHt$R.DUSHHH_=Ht^H(H.H=&!HH !H9t/Ht1H1HH1 H+uHHD$訬HD$H[]1AVAUIATUHSHH !H#1HPH-!LL$LD$HD$Hl$臫pH\$H9H=!HT$ 1N.H\$ HjH\$H+.Hl$HH}L% !L9'L_H}HHHLHHPH[]A\A]A^DH{H5U!H9Hl$HH}L%!L9LҮH}Hs@HhHI3M9D$ L HHO-HxHLeLt$ HT$ H@@0Hx@H@ Ic H@(H@0IXLIH@8IHLLLLD$ LD$(LL$0HD$8KLT$@HD$HcT$ AAADd$ D[(D c,DـDL腮k)H;=!H{:HHLuH(f.M9D$ uL9uu HEL 3HI+HT$ HuHxnt$ H:+L1LA0HH+LXHIH@@0H@ Hc H@(H@0Lt$ H@8LX@HXLILd$HL`HT$ HT$(HHT$ HL$0Ht$@LLLHD$8KT$ AAADd$ D[(D c,D؀DtY*E!DHIt({(D!HHtHLSH+*Hm*H1L茬rH5!苫 HUH !H511HRH9豫7H5!HHH6CHIHImIMLD$ 0HH)LhLt$ Hc HT$ H|$ H|$(IXLIIILLLLD$0HD$8KLL$@LT$H&D$ A%H߉ƉD$ 7U)LT:13S(H!H5E1H8 HHHD$tH((LL `T$ LD$ /HH(LD$ L{;HL$ H}1Lx4t$ H6(zLqLL_D$ fUSHHHH=!HD$ mHt=HxHT$ HuHst$ H76u HH[]H+uH{1AWAV1AUATUSHHH5HXHT$HHD$HdH\$HHH{L%_!L9L螨H{H11HaHHLD$DH.HId(HxHL$DHUHt$DH;5H HXL[]A\A]A^A_fC Lc}8HEL)H9C(H4ulH=y!-HItHx1|]돩utH5!H9H4uHHIIE1AHHq1I.I/W'LE1褣 H}D$DH|$(L-HI&&LCL`MMD$IDsMO@LM1EoIG0IG AD l$EoPHT$DHut$DH3oI/%LE1ULP@LI`H@0H@ PLKI M9LL$ ]&fI*Y7f.7>&H,HHH9H&H9 !HIW8HM5!H9H|$ MuMW@Hl$Ld$HL4$FA@MAI#NJH,$ML $IMI.J4LIML2Ht$0LH)H\IIHLHH'LHH.HtIHHLHH'HIHHLHH'HILwHwLH&HHfIIHHLH'LJIHHLHfHH~-IIHVHFILH~H HII9HH{HIu9Ht$ H $1DMHH#NJI9MwI9M`u#LD$0O MHHILt$Hl$3EWIG LMG0AD T$EWMH5!I9w0IMw0IO8H9H\$DHt$(HLHv8uIIMv&M IqL9"I4L9I9Mh|6L9-`!LMG8HM5Q!L9 #AG #L9L%"KMLAG '#H\$DHaYCAG "H9HT$DLcH5!HHH6HIH ImIuLϞMH=!D$D2(HIZ!HxHL$DHULt$DH%/LID$M[HSH `!H511E1HRH9H=d!D$D'HI"HxHL$DHU1G,t$DH.!SI/ LE1ɝGHRf.AUATIUSIHH(HD$D$-H!H(H!Ht$1HLYHt$1HL&H;-!H=i!&HII!HD$HT$HKHt$I}HHHLD$6H|$H/H|$H/uǜt$H[-u{H(L[]A\A]Ht$1HH_H|$H/ H|$H/upLl$HLL$IH\H|$H/`AVImZ LE1&j@H|$H/s Ll$GLl$=@USH !HHHHPH-3!HAHD$0HD$D$Hl$0P1LL$@LD$HߚZYHT$8Ht$ HٿHT$0Ht$HٿoHT$(H9H=!$HHLT$HT$HKHt$ HxHHMLD$ OH|$ H/H|$H/t$ Hu+HHH[]Ht$HٿH=!$HH0LT$HT$HKHt$ HxHHMuJLD$ H|$ H/tiH|$H/tPt$ H*lHmuH eEu 0IAFII9|A|$u)HL$I~Hz1AEɓH+H(L[]A\A]A^A_H5H襕tfH5H蒕ASH5nHxALL$H1LHD$HMT AsNaNABiH|$HAHD$HD Inf?|$A0ItHE1HkH=o!H50E1H?荒LQ!H5I8rH+˜LE1蝖L !!H5RI9BH !H5E1H9'L!H5ܭE1I8 nH|$H1HD$IIBDNaN8H=!H5nE1H?&L!H5FE1I;裑@f.HHw1 HtH(rH!HZDSHwH1 HtH(OHCH[H=!S11H2H=!@,HH?HH(uH訐H[AUATIUSIHH-!Hl$ HH(HLD$H !H͵1LL艏HD$H9uJH\$H=˵!FHIteH|$1bHID$I\$HHL[]A\A]HxH5¸!H9thuH!H5^E1H:E1@ f.ATUSHGD 耒H?HH}!)DcFH!HsHΒH H;uH[]A\@ATUS1#HH="!I-#! H=%!-)!"H=+!-/!H=1!to-9!H=;!tY-C!H=E!tC-M!H=O!t-HF! H H;tktHsLɏyAH=x!t%Ho!Df.ku.H H;uL[]A\H5z!Lz9HsLaڕH H;uH5!H>鲕H5!L"閕H5&!LzH5*!L^H5.!LΎGUSHHHt3HH3HZH諎tH C>HCZ[]1f.SHH!HH9FtHƒt[HNKS(1Df.USHHH蟍HH5HH92w ]81Z[]fLGHO1HHHGI)LGIHtHHt <A<DAWAVIAUAT1USHIHHHIrLl$XHT$PHD$H1I} H$I~$HflLaH)HIBA)tHHx A4@4MtLH1LLHHQ"MM(IRE1IEEAA@AdI9[I:HIJI)IrHH)EH<$IJ~ $H$ $A) *HHHJ|LD<E<HPHtcL|HG<D< HPHtHL|HG<D< HPHt-L|HHpG<HD< t 7A 0HHuMuKA}zuL\$IRM4M]M9HMjMt MCDH[]A\A]A^A_MtI~EunIu LLA9t AytIIIRLHbLIIQC80I9M)AH)H?IMJIjfoMaHfAA)MbCB\ $DLG(IAt IyIyHHHHHwIy HHHH@@f.HHHH%!US0HH9=!HM=!HHHH!HH͑HHHH!HHC(HCHCHCHk HZ[]f.HE1HHuBSHH=!HHt(H1Hr HHHttftH[Lff.HSHHe[@f.HSHH9H>[f.H9v4USH_HHHHHHžHHX[]1@USHH[HHHHؾHHxJH9HCZ[]Df.LGHGLHH9|uLOH(J|tH)HRI9}ށ @HG HH+GH錇ff.HGHH+GHlff.Gt H!HH!Hfu)HWHG(H|tHOHOHH9N@@1Df.USH !HHHHH-!HLD$1Hl$[HD$H9t3HxH5ޮ!H9uCHpH{\uYH!!HH[]1HHD$tEH(HD$AݐH!H53H:Ӆ1H!H1@f.1u(HOHW(H|tHGHGHH9F@@USH !HHHHH-!HLD$1Hl$KHD$H9t3HxH5έ!H9uCHpH{ltYHA!HH[]!HHD$tEH(HD$1H!H5#H:Ä1H!H1@f.HHW@Hz uHH8HH81ZH֟!HZUSHHHHHHߍH$!H͍Z[]Df.t(2@uLJHR(J|t41ƺQ8uLFHv(J|t3ƃ,8Hʾ_8Df.6@t@8tu@77L¾8fGt HӞ!HH!HfH!H@1Gu HG(HG HH~@Gt H!HHG!HfG t Hc!HH'!HfSH=!SHHt(H@@H{HcHC0HC s+H[@f.SH=Ȥ!HHt(H@@H{H cHC0HC #+H[@f.@f.HHHHHHSH8!HH9FtHƒt[HNS,1Df.AUATHUSHHHHH9IHu-Z[]A\A]ùIHHHH9tNHHHpH9bHIh-KH߃U(Hu?Z[]1DATUHSIHITH1HtHHLaHH![]A\@f.ATUHSIHSH1HtHHLHHʜ![]A\USHHH3HuMHƒHuHZ[]HAVAUIATUISHWHH_HFHHH9˗~(uHMH9[]A\A]A^HH+H9ԗIt$I|$(HH+MH|H6AM H9ØDAWAVIAUATIUSHIMHD$ IAHt$ LIUIUHH9D$ AALHkHcHLIFIHNgmI9LOdtpHT$ Ht$Hٿ#tELL$LD$IyIpHuHo!HI)tAI(t'H0[Ho!HH|$H/ujO1LHD$YOHD$LHD$EOLD$HD$fUSHHH5s1H8HL$ HT$(D$ QHT$(Ht$HٿEHT$ Ht$Hٿ&t~H=u!6HH|zHD$Ht$H}HKLD$ HPHvH|$H/t)H|$H/t%t$ HWzH8H[]MNFNH|$H/u 4N11ff.USHHH5r1H8HL$ HT$(D$ PHT$(Ht$Hٿ5HT$ Ht$Hٿt~H=t!&HHyHD$Ht$H}HKLD$ HPHvvH|$H/t)H|$H/t%t$ HyH8H[]=M6MH|$H/u $M11ff.USHHH5q1H8HL$ HT$(D$ OHT$(Ht$Hٿ%HT$ Ht$Hٿt~H=s!HHxHD$Ht$H}HKLD$ HPHvH|$H/t)H|$H/t%t$ HxH8H[]-L&LH|$H/u L11ff.USHHH5p1H8HL$ HT$(D$ NHT$(Ht$HٿHT$ Ht$Hٿt~H=r!HHxHD$Ht$H}HKLD$ HPHvH|$H/t)H|$H/t%t$ HwH8H[]KKH|$H/u K11ff.USHHH5so1H8HL$ HT$(D$ MHT$(Ht$HٿHT$ Ht$Hٿt~H=q!HHHwHD$Ht$H}HKLD$ HPHvvH|$H/t)H|$H/t%t$ H#wH8H[] JJH|$H/u I11ff.ATUHSHH5an1H0HL$ HT$(D$ rLHT$(Ht$HHT$ Ht$HԥH=p!HHuvHD$HL$HT$ H{D`HqSAt SD SH|$H/t+H|$H/t't$ H>vH0H[]A\HH1H|$H/uH1fUSHHHH(Ht$1t!Hl$HsH}HmtHKH([]HHD$eHHD$@f.USHHHHHt$D$芤t\H=_o!HHuHD$H{HL$HUHpH|$H/t"t$H|uHH[]1GDf.USHHHHHt$D$t\H=n!HHluHD$H{HL$HUHpCH|$H/t"t$HuHH[]1!GDf.USHHHHHt$D$JtgH=n!ZHHtHD$HT$H{Hp tsH|$H/tt$H8tHH[]F1f.HHHHt$跢t HD$H1DUSHHHHHt$D$ztgH=Om!HH`tHD$HT$H{Hp tcH|$H/tt$Hh tHH[]E1f.SHHHH Ht$1tH|$HH|$H/sH [fH(HHHt$藡tOH|$GuHW0HG@H|tHQe!HH/tH(Hke!HHD$DHD$1H(HHHt$'t!H|$Gu+Hd!HH/t H(1HD$DHD$Hd!HH(HHHt$Ǡt.H|$GuHd!HH/tH(Hd!H1HD$'DHD$H(HHHt$gt?H|$G uH1d!HH/tH(HKd!HHD$CHD$1H(HHHt$t?H|$GuHd!HH/tH(Hc!HHD$kCHD$1SHHHH Ht$裟tNLD$HsIx载uHbc!HI(tH [H{c!HLHD$BHD$1f.SHHHH Ht$#t:LD$HsIxtHc!HI(tH [Hb!H1LHD$tBHD$f.USHHH5f1H8HL$ HT$(D$ DHT$(Ht$HٿuHT$ Ht$HٿVt~H=+i!fHHpHD$Ht$H}HKLD$ HPHvH|$H/t)H|$H/t%t$ H4pH8H[]}AvAH|$H/u dA11ff.USHHH5e1H8HL$ HT$(D$ CHT$(Ht$HٿeHT$ Ht$HٿFt~H=h!VHHoHD$Ht$H}HKLD$ HPHvvH|$H/t)H|$H/t%t$ H$oH8H[]m@f@H|$H/u T@11ff.USHHH5d1H8HL$ HT$(D$ BHT$(Ht$HٿUHT$ Ht$Hٿ6t~H= g!FHH"oHD$Ht$H}HKLD$ HPHvH|$H/t)H|$H/t%t$ HnH8H[]]?V?H|$H/u D?11ff.USHHH5c1H8HL$ HT$(D$ AHT$(Ht$HٿEHT$ Ht$Hٿ&t~H=e!6HHUnHD$Ht$H}HKLD$ HPHvH|$H/t)H|$H/t%t$ H0nH8H[]M>F>H|$H/u 4>11ff.USHHH5b1H8HL$ HT$(D$ @HT$(Ht$Hٿ5HT$ Ht$Hٿt~H=d!&HHmHD$Ht$H}HKLD$ HPHvH|$H/t)H|$H/t%t$ HcmH8H[]==6=H|$H/u $=11ff.USHHH5a1H8HL$ HT$(D$ ?HT$(Ht$Hٿ%HT$ Ht$Hٿt~H=c!HHlHD$Ht$H}HKLD$ HPHvVH|$H/t)H|$H/t%t$ HlH8H[]-<&LL$LD$(1D$ H\$NHL$H9SHHD$H(VHL$Ht$ H$uHL$HT$(Ht$uH=?!HHqVHT$Ht$LD$ H|$ HJHVHwHxZH|$ H//VH|$H/u;t$ H|$ͨu6H8H[]HyH5@!H94V0H|$ H/U1HmuH1USHHH5c<1H8HL$ HT$(D$ tHT$(Ht$HٿsHT$ Ht$Hٿst~H=>!HHUHD$Ht$H}HKLD$ HPHv6H|$H/t)H|$H/t%t$ H货UH8H[]H|$H/u 11ff.1GuHG@HW0H|GuHW0HG@H|t H6!HH6!HfUSH w[!HHHHH-6!H;LD$1Hl$HD$H9tYHxH5?!H9ui1҃xPHsHƒ̌HVH<$HH<$H9!HH[];HHD$t8H(VHD$KVH5!H5=21H:1DUSHHrH1HtHuH=#:HEH+VH[]@SHVHVHHH+uHD$D$f.zXVHf[f.SHHHH Ht$3qt\1҃{PHD$H|$HpƒkH|$H/t1HVH|$HZ~H|$H\8!H H[1HD$eHD$@f.AWAVAUATIUSHH(HUA|$HÃ,HHU ]HT;H=8HDIMoUH{1vHIzUE1H=[!E1LLH1DAAMtHD$LR7!HD$Ht HmUUMt I//UMt I,$UH([]A\A]A^A_À#H|$HCH͉Lt$MU1HLHHHH|$I1M5E1L;l$ C4.0HcHKDII|$ FIHD$H{(_6!DHD$HD$HC6!HD$H=26}HISH=711HICTE1ff.SHHcHVH(UHHߺ[H{f.SHH#HUH(UHHߺ[H;f.AUATIUSHHXHD$D$ ʡHoH(HUHT$H561HDH|$HHWHD$HD$D$ HD$(HD$0HD$8HD$@HD$HHIH=8!=HHHI9IHKHT$ It$H}LD$ Ll$(:{t$ Hu#HXH[]A\A]úHLHHmuH16Ht1H=70!H511H?NH=E7!耙HHV1IDDf.AWAVIAUATHUSIHIMH(HȇHH=IHclYHH9[HH9tHHHH9vHH H/HHD$ZHHHD$HD$ZHHHD$LD$9ZHHrHLLHHHrHH|$LHHHrHH|$LHHM9Y1LHLD$VLD$YH|$H7LD$YH|$HLD$ I6HHt$E1E111H#NJIM99H0HIIHIHIIIILWHLMHAHEK9HAE1M9AAILJLI#NJL9WHIHHIHH9\$HE1LL$LT$IIH(H@DMMIL)>I(LAEMLHL)I(IMHHIM9ff.HIHIIHIHIIHNULLLHI@HDO,9LA1M9AI#NJHIJLL9DUHIHHIHH9\$HtWE1zIMBIMHI(IIIIH|$LD$e.!H|$H\$Ht P.!H\$H(H[]A\A]A^A_IyUUfDAWAVIAUATIUSLIHMHD D3 AHQHI(H|t;IHLLǻHLL4HHL[L]A\A]A^A_4I~MF(I|AL1LMH[]A\A]A^A_ILHLDL$-DT$u>DAAeEtj1L1L~MHHL[L]A\A]A^A_1LJ1L;MPAL!Df.ATUISHH0D$HeH(HeHt$(1HHdHt$ 1HLdH=/!近HHeH=l/!觑HI-eHD$ HT$(H}It$LL$LCHHHRH|$(H/H|$ H/ut$Hgu3H=,-1LH I,$dHmdH0[]A\I,$uLHmtdHn1HD$(H|$(H/-dHD$ H`ATUISHH5+1H@HL$0HT$8D$ HT$8Ht$(LScHT$0Ht$ L4cH=.!@HHddH=-!(HHwdHD$ HT$(H{HuLL$MD$HHHR3H|$(H/ucH|$ H/uSt$Lu6H=+1HHHmcH+cH@[]A\1HmuHH+uH1H|$(H/u1ATUISHH D$ H dH(HcHt$H1HaHl$Ht$1HLaH=,!ڎHHcHD$Ht$H}HKLD$ HPHvH|$H/t2H|$H/t t$ H訕cH H[]A\H|$H/cHl$ATUISHH D$ HcH(HcHt$H1H`Hl$Ht$1HL`H=+!ڍHHvcHD$Ht$H}HKLD$ HPHv*H|$H/t2H|$H/t t$ H訔McH H[]A\H|$H/bHl$AWAVIAUATIUSIHMHH$H$D$@0HD$HHD$PHD$XHD$`@HD$hD$0HD$HD$ HD$(HD$0@HT$8AIOIw(H|I9keHl$MMLLHHشD$   H{LC(I|LKLKAM)MWMWIHt$8HL$(L\Iɚ;I'IcI EAH;McD$JHI96H|$ H|$HڱLD$p$LjAEAAAE8MHLHHwA$dHH)xRu<$uJD$@ddD$%dcLLHe,HĨ[]A\A]A^A_Ã|$L+HHMLLLH$uAt1LHںIVM^(I|uL¾軺AcLLH!LLH+YH?zZI9cHc I9xcIo#M9IcHƤ~L9EAA*IEAAMHLHH?tI?Bv9IA VcLD$M9EHι\IEAHI#NJH0bD$USHH 4A!HHH8H3 !HB%LL$LD$(1D$ H\$HL$H9HHD$H( cHL$Ht$ H[HL$HT$(Ht$[H=t&!诈HHbHT$Ht$LD$ H|$ HJHVHwHx*H|$ H/pbH|$H/tt$ H|$ru=H8H[]HyH5'!H9sb.H|$ H/b1HmuH1@f.USHH $B!HHHH!H#LD$1D$H\$sHD$H9uh|HHD$H(cH==%!xHHt|Ht$HxHL$HVHu%t$H|$gu=HH[]HxH5&!H9t4uH!H5*1H:H+u H1v1USH >!HHHHPH!H"HD$D$H\$P1LL$@LD$HhZY|HL$H9kHHD$[H(fHL$Ht$(H!HHHH#!H3 LD$1D$H\$HD$H9t_HxH5f#!H9u|H=!!HHHt$HxHL$HVHut$H|$u%HH[]荊HHD$tEH(fmH+u3H1wH !H51H: 1f.AWAVAAUATIUSIMHHhH\$0HD$`$0HD$HD$IHHD$(HD$HD$ @讎IUHKLHHHT$0HHt$0LLAo1MILHH$ooHh[]A\A]A^A_fAWAVIAUATIUSHHֹ IH AEH\$ HߨD$DIu(IMHTH<Hɚ;gH'Hc-H L1HHI;IUIULbMLHI;FpA~,(pH$L$L$L$M9Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@H$Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@L$Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@L$D$P0HD$XHD$`HD$hHD$p@LT$xnIL$H$HsL$D$HL\$H $HHt$HD$HT$HL1IHT$ LIIH+|$ L$$H$LI@IHDŽ$&MLD$HH|$LLLL$ vDLD$H<$HLLDAu)MWIG(J|tH4$H|$HhWEv(HT$0HHt$ LDt$HnHHL $ m$m/m$.mAmD$PBmOmH []A\A]A^A_HMuMuLH1L1EHHLI?zZL9woHvHH9IrN L9II9Ѓ fH?BHH;Ic L9vkIo#L9JkHƤ~H9ЃHH#HLHI TI9Ѓ HLLEzAEu1LG{L0dHY OL)jjjjDf.USHHHHHt$D$Ot\H=!|HHkHD$H{HL$HUHp3H|$H/t"t$H謃LkHH[]1Df.USHH T6!HHHH#!H3LD$1D$H\$HD$H9t[HxH5f!H9ufH=!{HHtuHt$HxHL$HVHubt$H|$uLHH[]葂HHD$t/H(juH#!H51H::1H+uH1fUSHHHHHt$D$Nt\H=!*{HHlHD$H{HL$HUHpH|$H/t"t$H lHH[]1QDf.USHH 4!HHHH!HLD$1D$H\$CHD$H9t_HxH5!H9u|H=!UzHHHt$HxHL$HVHut$H|$@u%HH[]HHD$tEH(kH+u3H1gwHi!H5 1H:1f.HHHBJfAWAVH gAUATUSH=l7!H!H!H!H !H!H!H!tH! 7!L%1!L!It$`MZ`H~LLN(Mk@H55H=07!IL7!L #7!L-7!aHH6!exI$H5aHH6!AxL5!H=]!L5V!L5!L5!L5! xH=!wH=!wH=e!wH=MHHwH=!H5\HwH=c!H5>H|fwHmNwH='}HIWwH5HHIvH _!HH5H1HvH(~vH5LHHc5!lvI/HvIm0vH=HHvLH HH5H1HHX5!uH=HHuH35!H5HHMuHmmuH=WNHHJuH5OHHI'uH=H !H !H5H59I1qHH5!tH+tHmtI,$tH=z,!HIuH!H5NHH!StH7!H5LH%!!tH4!H5ALH~sH ? !H=n1H1HHHq3!sHH5NHL5s sHHH3!msL%1!A@H52!1HHsI$1HeHHI$rHmrI$I$LHzrI$LK3!IcAI HAIttjA$t45DH+ !H5<2!1HH5H- !H52!1HUHL 0!L5.!L .!I>A~H5l0!1rHHqI~1H8HHIFqHm|qIVI6LHZpI H 0!H0!H50!1HSH0!H50!1H1H !H1HDH=\!1HHH@1!/pHH5HLpH=1HHH0!oL= !H5LILfoIH5LLHoH=!1HHH0!ToHIIIH5TH@ H@?BL` HH@(KLLP0Lp8@PnH=4!1HHH0!XoHIH5H@ H@?BHL` H@(LLX0Lp8@POnL=`'!I?t1IHHnI7HLnIH-/!HuHnL=.!L5/!1M$/LHHI.nHHLLnHH@uHH5Lo\lH H5LQxZL[]A\A]A^A_PnHHinternal error in flags_as_exceptionvalid values for signals are: [InvalidOperation, FloatOperation, DivisionByZero, Overflow, Underflow, Subnormal, Inexact, Rounded, Clamped]argument must be a signal dict{:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}valid values for capitals are 0 or 1valid values for rounding are: [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_05UP]invalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERICargument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_stroptional argument must be a contextinternal error: could not find method %svalid range for prec is [1, MAX_PREC]valid range for Emax is [0, MAX_EMAX]valid range for Emin is [MIN_EMIN, 0]internal error in context_settraps_dictvalid values for clamp are 0 or 1/builddir/build/BUILD/Python-3.8.12/Modules/_decimal/libmpdec/typearith.hmul_size_t(): overflow: check the contextadd_size_t(): overflow: check the contextinternal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)internal error in context_setstatus_dictcontext attributes cannot be deletedinternal error in context_setroundsub_size_t(): overflow: check the contextinternal error in context_settraps_listinternal error in context_setstatus_listconversion from %s to Decimal is not supportedinternal error in PyDec_ToIntegralExactinternal error in PyDec_ToIntegralValueinternal error in dec_mpd_qquantizecannot convert signaling NaN to floatcannot convert Infinity to integeroptional arg must be an integercannot convert NaN to integer ratiocannot convert Infinity to integer ratiooptional argument must be a dictformat specification exceeds internal limits of _decimal/builddir/build/BUILD/Python-3.8.12/Modules/_decimal/libmpdec/mpdecimal.clibmpdec: internal error in _mpd_base_ndivmod: please reportCannot hash a signaling NaN valuedec_hash: internal error: please reportexact conversion for comparison failedargument must be a tuple or list/builddir/build/BUILD/Python-3.8.12/Modules/_decimal/libmpdec/context.cmpd_setminalloc: ignoring request to set MPD_MINALLOC a second time signal keys cannot be deletedinvalid signal dictTrueFalseargument must be a DecimalFexponent must be an integer%s%liargument must be a context%s:%d: error: sNaN+Infinity+Zero+Normal+Subnormal-Infinity-Zero-Normal-Subnormal%s, O(nsnniiOO)|OOOOOOOOargument must be an integerO|OOO(O)-nanDecimal('%s')(i)cannot convert NaN to integerformat arg must be str.,invalid format stringdecimal_pointthousands_sepgroupinginvalid override dict%s:%d: warning: (OO)OO|Oargument must be int or floatnumeratordenominatoras_integer_ratiobit_length__module__numbersNumberregisterRationalcollectionssign digits exponentDecimalTuple(ss)namedtuplecollections.abcMutableMappingSignalDicts(OO){}decimal.DecimalExceptionDefaultContextdecimal_contextHAVE_CONTEXTVARHAVE_THREADSBasicContextExtendedContext1.70__version__2.4.2__libmpdec_version__ROUND_UPROUND_DOWNROUND_CEILINGROUND_FLOORROUND_HALF_UPROUND_HALF_DOWNROUND_HALF_EVENROUND_05UPROUND_TRUNCcopyprecEmaxEminroundingcapitalsclamp__enter____exit__realimagexplnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtcomparecompare_signalmax_magmin_magnext_towardquantizeremainder_nearfmais_canonicalis_finiteis_infiniteis_nanis_qnanis_snanis_signedis_zerois_normalis_subnormaladjustedconjugateradixcopy_abscopy_negatelogblogical_invertnumber_classto_eng_stringcompare_totalcompare_total_magcopy_signsame_quantumlogical_andlogical_orlogical_xorrotatescalebshiftas_tuple__copy____deepcopy____format____reduce____round____ceil____floor____trunc____complex____sizeof__adddividedivide_intdivmodmultiplyremaindersubtractpowerEtinyEtop_applycopy_decimalto_sci_stringclear_flagsclear_trapscreate_decimalcreate_decimal_from_floatgetcontextsetcontextlocalcontextMAX_PRECMAX_EMAXMIN_EMINMIN_ETINYdecimal.SignalDictMixinotherthirdmodulodecimal.InvalidOperationdecimal.ConversionSyntaxdecimal.DivisionImpossibledecimal.DivisionUndefineddecimal.InvalidContextdecimal.ContextManagerctxdecimal.Decimaldecimal.FloatOperationdecimal.DivisionByZerodecimal.Overflowdecimal.Underflowdecimal.Subnormaldecimal.Inexactdecimal.Roundeddecimal.Clampeddecimal.Contextpp uep0uoXuoPu1o@unHuPn`ummumMmpQR4Cfg%~ggg%gIH\l3)x(<L * 4@X@a@@@@l>kA| l d $ $`%~5 w.YK=Se@aB(e f5D~/B.B0gh,=g8E% k:Z>q(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?Z=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"!   @ @ @ @ @ @ @ @ d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJDecimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_and($self, x, y, /) -- Digit-wise and of x and y. copy_sign($self, x, y, /) -- Copy the sign from y to x. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. number_class($self, x, /) -- Return an indication of the class of x. logical_invert($self, x, /) -- Invert all digits of x. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. canonical($self, x, /) -- Return a new instance of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. radix($self, /) -- Return 10. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value subtract($self, x, y, /) -- Return the difference between x and y. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. multiply($self, x, y, /) -- Return the product of x and y. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. add($self, x, y, /) -- Return the sum of x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. exp($self, x, /) -- Return e ** x. abs($self, x, /) -- Return the absolute value of x. localcontext($module, /, ctx=None) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic module?B d d ?9$|k?䌄_wC_"@CCKvl?x??;P innnoo1o p6p?pIp8npppp`Iqqq(q`qq r1rPrgrXrrrrrs!sh]sH`sss tH ct tX!t!-u"0ux"u"uP#u#uh$vx%`w%w%wP&x&xX'x'x((eyp(y)z*:z*Cz8+azp+oz+yz0,|0-}-}(.(~.B~.\~8/~x/OX00!113܂(44R45,56 7:X7L7.8`89p9ۋx;;8<K<u<h==W>kP>x>X?T?g@@tA A:AMBZpBBѐPCC1@D>DERFxGxG"XHeHH0I.xIqIHJۗJK5HKgKK˘0Lߘ MM2 NuhNNN>@OOĚPXPPHPz0QxQޛQ(RMpRΜROSޝHS_SSi TTTUġ`UEUƢUG8VȣVIVʤhWW XBXjYPY֦YYAHZnZ[([\]] ]IP^u^8_'_O_`X``«`Ϋaګxaxb9HbWbvbcccdfd*PeheexfffI0ggh)ixidi0jxj2jZ0kxklrllJ(mmnBHnOn* oSxopEppp(@qJq8r@ri(s~sktHtt8huu$`vvvXw&wqxPxxHyy@z"zdz{b|`|3|0`@    pPxx`p0H`x0@8pP   `!p!" `" ## #%%@#'#'#@(0$)P$)p$`)$*p%+%P+P'+P+H,,,.-p/@.p0P/ 1/1/20p9p0D1@E1pH`2J2J2L 3@S3`W@4d4m5q5t5~6 7p7p 8 9;О;p<Щh>> X@@0BB`(GGJp`JpLL0M`O (PPWWWhY(\ ]p]^^ _@_`(``a@ bb@cdff0g%i@'HjP(j)Hk*k1l2@m8mP9`nEnF8o`JoJppLpNXq0Qq@VPrWr@s`ttwpwhxx`y`y@Xzzp{0{{`(|`pHx Pp `pP0`@8P(@h 00P`Pp( ` `0"H""""# #h##` $08$$0$$$0%Ph&&p''0(((((00)PH)p))* (*0@*@X*Pp*+`- x.../2002p78P99`(:@x: :;P<<=@= >?0@0HAAAB@CD XDEPE@F@FPpF0F0G H0pH@HPI`HIp I!J"J"K@#`K#K$K$L%HLp%hL%L0&L&8M&XMp'M'M)8N*N +N0,O@-XOP.pP.P/Q00HQ0Qp1Qp2@R3RP5R6S@8`S9S:SP<8Tp=T>T@0UpAxUBUPDVEPV@GVI8XIXPK YKYLZMZPN[Q[pR[Sh^S^SP_T_Up``U`V(a@X`bXbX cZe`hahc idiejf l`jlknlpnspotpu`quvxvpwvpxwy x z{0zx|zRx $pVFJ w?;*3$"D[ \\tx @X H5As$(<Db A zRx [tbKG A ,AAD  AAJ ,ȽBAA _ ABA zRx  $fZ ,,0ADD A AAA zRx  $ ZL Z\zMGDGDGDGDGDGDn$(1AAJ bAAeZ1<$h}BBA A(D05 (C ABBA d |н9jN<oAAJ w GAE L AAB LAA$GAAR pAAY Ƚ@A[ A 46Ai E zRx $7Y MAC\ Y%\OH A X9$`_AAL0KDAzRx 0$XL\`BBB B(A0A8G` 8D0A(B BBBA $zRx `,\X$@AG r AA zRx  $XGL +Df$X | (AfLmX MHDBX02D mzRx  X<4BBD A(G@ (D ABBA zRx @$W1`,X\BAA TABW), pBAC   ABA LaW,TlZDA DFB8W,FAAG u AAA tW"4<JA AD VAzRx $V4T TKj AF NAtzV  XD    x ,4 xSAAJ o AAA  U,| `AAJ g AAA , cAAJ ~ AAA  пAAf A 5U, GAAJ s AAA  U1\ t U 4 `VEHD D(x DBB @  T< X;L BBE B(C0A8MP 8A0A(B BBBA \ S,t BAD AB  T$ AAN AA S HTO@A4 L SFd XDM4 SO @DQl SO, (<FAK cAA$8AAAK qAA,`=D\sS,4tXDBAD G0  AABL zRx 0$/SEL8UBB E(A0A8Rx 8A0A(B BBBA $zRx x,RYt S(0RT1,48AAT0a AAA D R|0,AAT0a AAA  HR P-$R(<@NAL4\0^YALk HEA WK8,AAT0V AAA  tQh= F$$?KAqA$LlIA_AALtxKBBB B(D0A8G{ 8A0A(B BBBA $zRx ,P`QPA4QLLdBBG B(D0A8T" 8A0A(B BBBA $zRx ,[QDBBE B(E0A8QP8A0A(B BBB$zRx P,QDdBAA JERAERG AABzRx $PQ:(P`b A L$X1AAJ bAA*Q $DhkAG d AA ,l=BAA D0p AABPo,>BAA D0q AAB<Pra>, D( \ t(04XBBD A(R0v(A ABBzRx 0$PEDBA@dBA@AAf A OL EAA L ABE W DBA A GBE AGB|:O AABP!A_\OHD K N<BBD A(J0_ (A ABBA 4N LThBBB B(D0A8GP 8D0A(B BBBA ANET-KBL F(K0K80A(B BBBAB8dPBBB B(A0A8GJ 8G0A(B BBBE  8J0A(B BBBG $zRx ,,O 8D0E(B BBBE DBBE B(D0A8P@f8D0A(B BBB$zRx @,O+<\BBD A(O0^ (A ABBA O:4(JAJ b AAG pF $TAAN0~DAO$,TAAN0~DA4ZO<lBBD A(J0z (A ABBA OU$VAG0AA1O$aJ I FA ,,KHAR eFAA\NAW X L|lBIB B(D0A8P`D 8A0A(B BBBN $NVL BBF B(D0A8K; 8A0A(B BBBA $zRx ,N|Tt<BBE A(A0D@HFPEXM`V@[ 0A(A BBBA $zRx @,NtL !BBB B(D0A8R@< 8D0A(B BBBH DN,tؾBBAD wAB,@BAD uAB\GiAA  ABJ P DBJ k ABR tC N4 (DL KBE D(D0(D BBBAL iBBB B(A0A8G 5 8D0A(B BBBA $zRx  ,M)L$!BBG B(E0D8M 8D0A(B BBBE $zRx ,NL!#` BBE B(F0A8S5 8A0A(B BBBA \N^L"0BBF D(A0A8U 8C0A(B BBBA RN9L"8KBBG B(D0A8Q8A0A(B BBB$zRx ,M,#H<k\@TNu A l\# > BBB B(A0A8D@HMMGGS' 8A0A(B BBBN $zRx ,\N<D $H BEB B(N0A8 0D(B BBBJ $zRx 8,N4$XUBAA D0  DABA $NL$(VBBE B(A0A8D 8D0A(B BBBA N,L%HAAJ t AAA $#O2d%HWBBB B(A0A8D@ 8A0A(B BBBF  8D0A(B BBBO  NX<&BBE A(D0o (A BBBA $zRx 0,PL&[BBB B(D0A8JPG 8A0A(B BBBA "RAL&-BBE B(D0A8MP 8A0A(B BBBA LL'BBE A(D0Z (J BBBE J (A BBBA L'0BBE A(D0Z (J BBBE N (A BBBA L'BBE A(D0Z (J BBBE M (A BBBA L<(PBBE A(D0Z (J BBBE W(A BBB\(bBBD A(M0h (J ABBE ] (J ABBE l(A ABB[P,)h}BAD D0j DAB,P*\L)bBBD A(M0a (G DBBE b (J ABBE N(A ABBO-,)(}BAD D0j DABLO*< *`BBB A(D0N@m0D(A BBB O1Ld*xbY BBE B(A0A8GpI 8A0A(B BBBI $zRx p,6Os<*BBD A(M@\ (A ABBA #QO>,L+`mAG a DL c AA l%GODI,+AAT0 DAA &O L+`kBBE B(D0A8P 8A0A(B BBBA $zRx ,N\l,yBBE A(D0e (J BBBE Y (A BBBA Q(A BBB,,ODAAJ0c AAA D, rBBE A(D0J 0A(A BBBA $zRx ,TO,-AAT0 DAA (O \-xBBE A(D0g (J BBBE i (A BBBJ A(A BBB,,.x'AAG AAA zRx $dN$.NBAAJ0sAAD.cBBE A(D0J 0A(A BBBA N</BBE A(D0t (A BBBA ,\/AAT0 DAA l*-N </xBBD A(M@ (A ABBJ t(MJ,/zAAG0m AAA  +M-|D0BBB B(D0A8Dp 8D0A(B BBBJ  8A0A(B BBBE I 8D0A(B BBBJ ,yM 8A0A(B BBBA d0VBG A(G@ (D ABBE D (G ABBJ MM@$)M\ (A ABBA ,1AAT0 DAA ,M |1pBBB B(A0A8G`! 8D0A(B BBBJ  8D0A(B BBBJ  8A0A(B BBBE ,,^MH 8A0A(B BBBA D|2p!BBE A(D0M@ 0A(A BBBA |2XBBB B(D0A8D` 8G0A(B BBBJ ' 8A0A(B BBBE D 8G0A(B BBBJ ,-Mh 8A0A(B BBBA <t38qBBD A(M0n (C ABBA ,3xAAG}CAL3BBE A(D0 (A BBBA z(A BBB M&Z(A BBB,T4HAAT0 DAA d/`M L40wHBBB B(A0A8G 8D0A(B BBBA ML5BBB B(H0A8D@Z 8D0A(B BBBD $T5HAS@ AA ,|5AASP DAA zRx P$MC,5AASP DAA lMC,,6AASP DAA MC,t6HAASP DAA MC,6AASP DAA DMC47BAD PP  DABA zRx P$MB$t7}AS0 DA zRx 0$cM($7~AS0 DA dKM(,8bAAR@w AAA ,D8(AAR0l DAA T3L2,8AAR0l DAA 3L2,8AAR0p DAA 3L290+D b A ,<9@AAR0p DAA L4L29GAR0rA L9pD0I A 9`D0y A 9@`D0y A :|`D0y A <:``D0y A \:|WD0} A zRx 0K:P`D0y A $:sAR0y AA $:sAR0y AA ,;|(AASP DAA KC,d;AASP DAA  KC,;AASP DAA 4KC,;AASP DAA |KC,<<PAASP DAA JC,<AASP DAA  JC,<AASP DAA TJCD={BBD A(A0Q` 0D(A BBBA $zRx `,J),=|0AASP DAA $J),=AAR0l DAA 8nJ2,,>0AAR0l DAA <9XJ2,t>AAR0l DAA 9BJ2,>AAR0l DAA 9,J2,?8AAR0l DAA :J2LL?BBE B(D0A8L` 8D0A(B BBBA 9I=,?(lAATP DAA < I,?PlAATP DAA  J,D@xaAATP DAA  GJ,@rAATP DAA  J,@rAATP DAA \ J,AAATP AAA  K,dAnAATP DAA  AK,A AAT@ DAA zRx @$sK,B3AAT@ DAA lK,\BPAATP DAA  K,BpAATP DAA , \L,BpAATP DAA t L,4CpAATP DAA  L,|C@rAATP DAA M,CxpAATP DAA L@M< DBBH A(T`0 (D ABBA zRx `$IM4D8w"BAD G@  DABA zRx @$ZM4Dw BAD G@  DABA tMCLDExzBBE B(D0A8G` 8D0A(B BBBD ?M_\EBBD A(J@X (G ABBH a (A ABBA ](F ABB>M(4$F8VBAH Vp  DABA zRx p$ZM:,F(AAR0q DAA ALM24FyBAH Vp  DABA .M9,,G0AAR0n DAA K0,LxAAT0 DAA GK(4 MBAD F0  DABE >wK2$\M<AAG0pAAdHiK,M0AAD v DAA tK8KMVAD GEGK"^C$N`AG0f AA J $\NpAR0e DA J LN3BBB B(D0A8H` 8A0A(B BBBA DIZJLOXN BBB B(A0A8G* 8D0A(B BBBH $zRx ,hJ$OsAI0A AA $KO5AG \IIKD CA P5AG \I$JKD CA $TP؛sAI0A AA K<PBBD A(G (D ABBA $zRx ,#K DQrBBB A(A0D@ 0D(A BBBN 2J+ltQ BBE B(A0A8Jp 8A0A(B BBBA TECATB`A$zRx ,KK{L$RMBIB B(D0A8Pp8A0A(B BBBLtRxBBE B(D0A8P`I 8D0A(B BBBA MNLRLQBBBL B(D0A8J8A0A(B BBBD,S>TBBE B(D0A8P@8D0A(B BBBLtSȭBBE B(D0A8M 8A0A(B BBBD $zRx ,2TH4T8SBBD A(J@y(A ABBL*TLTT'T:BBH B(G0A8M 8A0A(B BBBLTZEBBE B(D0A8J 8A0A(B BBBLT BBE B(D0A8MT 8A0A(B BBBE $zRx ,]$|UBBE B(D0A8PPK 8G0D(B BBBE  8A0A(B BBBA b 8G0D(B BBBE <A^wf 8G0A(B BBBJ a8D0A(B BBB4DVmBAD GP   AABA D^4VhBAD P`  AABA zRx `$R^LWH`BBE B(D0A8P 8A0A(B BBBA |^24lWBAD G@  DABA ^^Y,WAASP DAA D"o^CLXQBBE B(D0A8P 8A0A(B BBBA J^(4lXBAD G@  DABA "^Y,X`(AASP DAA D#3^CLYHBBE B(D0A8PI 8A0A(B BBBA $zRx ,]|LYXBBE B(D0A8P " 8A0A(B BBBA $zRx  ,_W,$ZrAATP DAA $`,lZAASP DAA $aCLZXBBB B(D0A8J 8A0A(B BBBA $zRx ,`,D[AAR0h DAA TVb2,[AAT0 DAA Va L[) BBE B(D0A8M < 8A0A(B BBBA $zRx  ,oa,d\3AASP DAA &d)<\BBD A(I@ (D ABBL |UcYD]oBBB A(D0JPL 0A(A BBBA $zRx P,c4]AAThapThA` DAA zRx `$c,]@AAS` DAA ldSDD^BBE A(D0r 0A(A BBBA $zRx ,c"L^-BBB B(D0A8I` 8D0A(B BBBA tYcYL4_h BBB B(A0A8GQ 8D0A(B BBBA $zRx ,ccD_QBBD A(A0Q` 0D(A BBBA "c)L$`M.BBE B(A0A8G% 8A0A(B BBBA $zRx ,9cL`BBE B(D0A8M\ 8A0A(B BBBA $zRx ,g,DaAAR0l DAA T\ci2,aPAAT0 DAA \Mi La(iBBG B(D0A8M ?8A0A(B BBB$zRx  ,hLdbzBBE B(A0A8M 8A0A(B BBBA $zRx ,iLbBBE B(D0A8P8A0A(B BBBk<L\cpaBBE B(D0A8Uk 8A0A(B BBBA $zRx ,jt,cPAAR0l DAA ^k2,4dAAT0 DAA D_k L|dp#BBE B(D0A8Mh 8A0A(B BBBA wkOLd8%RBBE B(D0A8S$8A0A(B BBB^mK,LeAAR0l DAA \`am2,eAAT0 DAA `Km Le% BBB B(K0A8Mg 8A0A(B BBBN $zRx ,lmLlf/[BBE B(D0A8G 8A0A(B BBBK BnLf6^BBB B(A0A8J 8D0A(B BBBA HoXLJ@\`a0<i:†@9`x7dž`6 43@P_aLJ@Ӈ@ڇ    H@@&,5pAF@U bH@p`2@~@1@/`.0-+@*ʈE@ш(`؈`'@0 ވJ0  IMpM&0M00:IF1`&c`m@k%  % $"@#`#,@@8@J@@\-`Q aPi0"Up:@\0gX† ! x dž`n0K``w`& @P?Pp&`LJӇ @`ڇ` ```,` 50A`F U`bPJp`~ `P@`0 ʈ`G `ш ؈`ɉ` 8Չйo@ ` !c *c 3XLI<8>܉@$VX^X^X^X^X^X^X^X^X^dX^X^X^X^X^X^X^X^X^X^XˆXֈjˆXˆXXXXXXXXXXyqƊ؊XXXXy9yyyyyy"PaˆƆԆ݆Éωyq"91PHaY@k }@_decimal.cpython-38-x86_64-linux-gnu.so.debug+7zXZִF!t/n]?Eh=ڊ2NA5*̰gwU AW{iTcU Ńfy,*zNڑW?8$z iώ kswfg(`>Iu BBݱG.(5Y yARubf0S=sOo 4=t2:_xpcZalQ0U>iRp"3;{?Po 3M1:>Ze1//nPp=TmB0C+w$_Fq?D_B w:[ҟnߕVNHAMEQN%ݖVcl?B[7nm*lAd9ߎ 1,Y]`N]c/_*n8f#-ª ?/'I1z1 {dYěom{%ssK h**YqS'>G+&@OWa%@C! I8*MwGtr`WCy||KBAr<r:*d8E~Lik+)r9 CrܩcmP̰͌Bd댳o:%fau?n=aI\%\{@r*y&~ĪE`)x&>Cd ~^ 1lt=b0bS软@,gIs*H$rr䍭Z& -J,HT' .[̺3'؏!g }W}8!JOPO<J5@œ9Ͳq HVfbu-F +ݫug\j#H}u\ld@ VNbu 4›Oʻǐ6fUJ?HݛnyĵG@tݮB[Io (6z]sU {vI 73=~.Q`[LL \ |Vr۬ͯD`'e t)' ȳM]1uVX?j oqbS^dž=a$|Vk a2"e UGRٴLk]7*PG/CN$]6Ҿ&.=jGߨBh $fVNb =[‚LX0d|L@V=' 1$f >rmPCs\< M`լQ+=%#/M~%zIαNΫ/,7dxYQ8&!}Sp~3ܛSDw劄EJLd|B~7i ̯;n2ݱ',~u4Ʀwl򩫹z $ ?kCP!~L:p4Kd(+2U:O1 &8ZXJl~]Fe6FթAV:+_%M%$9 ߻SKĵ˷~:0aQx*zm/ ,'?^W !f-{PB☿Q qEJÔ&V7 zcg{3qX}&{a~{G³3uv- uZBP/E9ey0sTvxEDarQ/NשHQ%>%y#n[~ *)@l92$~^{ŽĀkJ:BoTjTO|mYRf5I_b~:_:Zϝ ;i/˿ڢJektu׵f eDz@rL 6IN1DX}`-DՁw$mT-rf.m4;vQlߢ?˸R5~{W";30q1_PoYX_.J~C0ڷ]ҭ/8$#p6qK>:_ѕMAH H.b귀^HBQL_@ˌ:,J5ϑT$m~T8vsG8oXK|wZކDPkCA;vҁo_Bd<@ـo$WH#CoUYԠa\9 7%Zѷ)ijz1V"3a_[\LDKەӤ3\câ0lie/^rUx@]yf;+K#FWR2K%LS.:h2.K맫I.F{M,m̑k\ 1Ѡ4bmI7or-Rbz͍y\N9YHa~QfCXy؀ՇG{/5_>c02g|NĶiM|LK6 8#/+& mD]Fl#ʭi5a/dn8qG4I*8`ft2x#HL Ȣ=zD"/oL*)vw8w ^{Z>@a9(u]`.tG1KXN PQQM cPr~V<#r}ƃg\Rӽ<1EΑGNJ\?Hpz y}Ԡ_0j꫁MB;/`ad=3^*:(>t$>:$tuP ˼=:izhNm /T W.l9)DRd`FT 5.nb؅ ytEG>j {#e~A*$sbi$S>4]g\5#IO $"U`dq[4g0if&™KO,e ] R/y#Қ,uË }H@9~ h$NtsoNg^tO4Q %6WҒ>i8YEqwgj#vO*Dq%Zךbw<^ń5ʹ]֤dwHӝ聊^I$?@(F@՗-;K{ݤ:t#XQܚh\?R)ZTKVͺ;| YnT\:鈜Eƈ0ɀBPatA3")f$˞o8W/qeYB@-پEy_'~U 8Wox3TqjA丠ۍO22.oxͷf.OT < 6}ugh_ Jɮ0ՇMC3S&qIS }vM5&Пg $!dT"&Yd=>DV%ZN,4 %S[" g7,+,:ZyɘK#>nC+)}Qclq/Ϩ rˡ9 W8{_f]$ڦÃ7xZ<Չ;vi?'rK6ӅφJ礐sO>bX2KT ?PhZϪ殮Nqrr{DoSی# q0qMv<0Fܟt]LR Vm/r͔8EcNerǭp&imfcƫ؆tGtV]ʖ}\Id'V)j+2m#~%0U\;Ndʧ RG ;/ȡ[]wNjԞ<֨\7