ELF>@4@h@8@ll  @H (( ( $$PtdQtdRtd PPGNU!YU2fpAij!@ jloBE|qX T幍8`qS aU%@[^~p<.}/7F?EaM0+ pKV{\k)fmQavP8 OJYR"^NULr ! !y !U @  / L__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizelibm.so.6libpthread.so.0libc.so.6PyFloat_FromDouble_PyModule_Add_Py_dg_infinity_Py_dg_stdnanPyFloat_TypePyFloat_AsDoublePyErr_Occurrednextafter_PyArg_CheckPositionalPyLong_FromUnsignedLongLongPyNumber_Multiply_Py_DeallocPyNumber_FloorDividePyLong_FromLong__errno_locationPyExc_OverflowErrorPyErr_SetStringPyExc_ValueErrorPyErr_SetFromErrno__isnan__isinf__finitecopysignfmodatan2logpowerfcerflog1plog2log10roundfloor_PyRuntime_PyLong_GCDPyNumber_Absolute_PyNumber_IndexPyNumber_Subtract_PyLong_Sign_PyLong_NumBits_PyLong_RshiftPyLong_AsUnsignedLongLongPyLong_FromUnsignedLong_PyLong_LshiftPyNumber_AddPyObject_RichCompareBoolPyBool_FromLongPyLong_TypePyLong_AsDoublePyObject_MallocPyObject_FreefrexpldexpsqrtPyErr_NoMemoryPyObject_GetIterPyIter_NextPyMem_FreePyMem_ReallocPyMem_MallocPyExc_MemoryErrorPyLong_AsLongAndOverflowPyExc_TypeError_PyArg_UnpackKeywordsPy_BuildValuemodfPyErr_ExceptionMatchesPyErr_Clear_PyLong_Frexpacosacoshasinasinhatanatanhcbrtexp2expm1fabs_Py_CheckFunctionResult_PyObject_MakeTpCall_PyObject_LookupSpecialIdPyErr_FormatPyType_ReadyPyLong_FromDoubleceilPySequence_TuplePyArg_ParseTuplePyNumber_TrueDivide_Py_NoneStructPyLong_AsLongLongAndOverflowPyInit_mathPyModuleDef_Init_edata__bss_start_end/opt/alt/python311/lib64:/opt/alt/openssl11/lib64:/opt/alt/sqlite/usr/lib64GLIBC_2.2.5{ ui k ui aui   Ѕ    ϱ 5   !!7!!!<!! !B!! !G(! 8!@@!MH!@X!`!h!Ќx! !R!`!!X!!!]!!!!A!@!8!@m! !=(!8!@!bH!X!@`!h!Vx! !j!!!n!p!!!0h!`!s!! !x!! !~(!8! @!H!]X!`!h!Ux!@!!P!!!R!!!G!`!˱!`! !!A! !(! 8!`@!H!pX!`!h!Пx! !!F!!!`G!@!!B!!Ʊ!М!!!O!@ !ʱ(!P8!@!H!`iX!@`!ѱh! x!!ױ!!`!ݱ!! !!P!!!!`!!! !((! r8!@!CH!plX!`!Hh!@x!@!!pf!!N!`!!S!!`!!! ! ! ! ! ( !n8 !@ !2H !vX ! ` !gh !x ! ! ! !` ! ! !! !!H ! P ! ! ! ! !" !,  (  0 8 @ H #P %X 3` <h >p @x B D F G H L O Q W X Y [ ^ c h! !(!0!8!@!H! P! X! `! h!p!x!!!!!!!!!!!!!! !!!"!$!&!'!(!) !*(!+0!,8!-@!.H!/P!0X!1`!2h!4p!5x!6!7!8!9!:!;!=!?!A!C!E!I!J!K!M!N!P!R!S!T!U !V(!Z0!\8!]@!_H!`P!aX!b`!dh!ep!fx!g!iHH5 HtH5 % @% h% h% h% h% h% h% h% hp% h`%z h P%r h @%j h 0%b h %Z h %R h%J h%B h%: h%2 h%* h%" h% h% h% hp% h`% hP% h@% h0% h % h% h% h% h % h!% h"% h#% h$% h%% h&% h'p% h(`%z h)P%r h*@%j h+0%b h, %Z h-%R h.%J h/%B h0%: h1%2 h2%* h3%" h4% h5% h6% h7p% h8`% h9P% h:@% h;0% h< % h=% h>% h?% h@% hA% hB% hC% hD% hE% hF% hGp% hH`%z hIP%r hJ@%j hK0%b hL %Z hM%* f% f(SF[SD$CHD$AS1HD$"HD$nS1HH={HֹnSH1[]$f.f($mSgSD$H$L$HSf.}f(SS$sH$RuMImt1qTL1bTHLHRHItHLI/uLHD$HD$ImTLHD$HD$S!H)Hj H:TD$V"IVHuE$u suWWHu $bW]W1H(7HX$X$HXWfDH$r $tff.v7f(Hf( $$$$u f.%v1gH/ gL"fLgLHD$HD$_gH1 H HH(1[]A\A]A^A_^HI Hs X . HLHL)H)HmIuHWMtLLL7I,$HuL5ImuL&H l$|$ Im L Hm H H 1H1HD$HD$HHtrH~iAK<HItEH; HhH9tPLHH+ImHtIL9tHH+R1ېHH[]A\A]A^Im~HIL9u1HH+HdHfDAWAVHAUATUSH(ZHHHHu"H+H(1[]A\A]A^A_HH:LhMIIJLAHHIAL$MIuHIyHHHD$H|$HH/HIL XHI8H)1GTAE1AAHHLIȹD)3HHcADd$MmLl$ML$Ht$MHL)IL)HGHHHD$Ht$IH.H MLHL)HHmIHMLLI,$HLImLHl$MDL$A!HHHIx1HH I/ALDALEH+H(H[]A\A]A^A_ALDHHf.HD)H+IHL-IHKILH8DDL1H)AD1LHHH<AMM9AH(E[D)]A\A]A^A_L/ HIhHmI\HL'mHBH+1H= H5-H?6Hu׍L-MHc1IMLI8H)F\+AE1AALHDAHDʼnHL9AH([E]A\A]A^A_D)f.HH- H9FuFHHc)Hf.iztHHcD$YHD$,HH H9FuFuHHcH1f.ztPHHcD$HD$AWAVHAUATUSHxGHzfLd$pH~%j Ml$Hl$@E1MHl$)d$=HIl$f(d$eH@H;Ҷ AvI.M%Kf(ME1HL)σAf(f(fTfTf.f(X|$hDD$hD\DD$`DL$`A\D$XDT$XfD.z(D\$XIL$hGIAfD(fD(fDTfDTfE.fD(DXDt$hD|$hD\D|$`\$`\D$XD$Xf.zMA|$XMrL$hI9CH H9GOH~L$HW(Ht$HHDd$HED$f.dzD$HNHD$ECD$SM2D$ZH []A\Ð;f.D$zAH}LGA@Ht$HHDd$HE0\$f.|zD$HjHD$E_D$usDMEuTD$|d$f.%zteD$tVl$E"fT-fV-Il$D$8t1E"HHEmH1H=X H5H?1hEB|$f.=CztD$tDD$EfDT1DD$H=^HֹJiDf.H(H H9Fu^f(\$;T$f(fT$f.@E@H|$f( t$H=]H(rfHf.`f(ztpf(L$T$uvf(T$u`ff.EʄuNf(H|$f(Ћt$f(H=\]H(D$HL$vD$Df.ATUASHHf(D$f.zjD$H$uT$um$t3u$H[]A\g$5tH1[]A\D$\uH H5[H:BD$UtEtH H5[H8$H$u$$HH H9Fu[F Ff(fTf.v3H,f5_fUH*f(f(fT\fVHUSHH5L HHHHt$HYHmHuHHH[]Hu*Hf.zuD$HD$t1gH[]off.AWAVAUATUSHHH3L.L~IEIWII]I9_HHLt$PD$D$Lt$H$1E1K|LGL;y OK|HGH;^ \OfT f(C L$D$ f.$IL9u$L;t$7\$8Dl$EE$IHL[]A\A]A^A_H: T$HT$ H;D$ L$ Yf.D$L$ z\fT f(C L$$D$ f.$&I$I9ff4$7f$D$D$H<H|$PHIH|$G0LV|$|$ $FIL  M9LL$ uAHf.Lهf(L\$zthK|HGH;T Gf.Lf(LT$zuHt'L;t$u(|$uA|$u$E1&oHuL$LzI/uLE1ImuLImL4f.D$L$  H]L$ D$HL$ t7f$f.E΄(HH|$L|$LE1bfEfEfD(fEfD5ՆGUvLHIpD$D$I]I;_uHbLt$PHLt$f$'L?HID$IwD$uLHIp|$ImLH=SHֹE11I/LDf.AWAVHAUATUSH8Ht$,HHD$&D$,QH|$&H|$HIHT$H>Lt$H?)HH$f. $H\$HH*HA@HHsII)HIH?A)I@McGMMI@6LgL9v}HGLH9HOIH9HoHH9Hw HH9LG HL9HIH9GHHH9wHHIHLTImIuLMI.uLLt$LLHIMLL$IMMLH,$H<$HLl$MH|ff.IA@IMPLMH)MHI?E)H@IcHHH@HoI9}HGHI9<HOHI9KHwHI9ZLG HM9LO IM9HII9HHI9wHKHHIM)II@LIH@IuH9~MEIL9MMIL9I}IH9MU HL9 M] IL9)IUIH9(HHH9wILHIjHHHmI.HI/*LM=LLImI}fH :A@HHqHL$LHI?E)IcHIH|$HLHHLHD$^I/HL\$LHT$H*HHE|Df.O|=@LIMWLMI?D)Hc5HHD$%LHLHIHD$LHHL$IH)[HCI,$L0MLHlHmIHI/LMLL0ImIf.Ll$MHH,$L$II,$uLL|$IGL!t`HHH!tRHhH!tDHpH!t6L@L!t(LHL!tHxHH!uf.Ht$LH)ImIuLH8L[]A\A]A^A_ff.LH(HHIHHXIH8HIXHHxI(HXHIILl$LkKf.!"+D$D GyfDTzfE.vT$H[P$H $uG $$HQ,$D$H H5HH9H1[D$H=K H5mHH?D$f.SHHf.KxD$ztw,D$H$~$\$zt3u$H[!$!tH1[HusxHH\xH$|D$iH 0 H5RGH9D$PH% H59GH:gfUSHH8HFHD$HHT$ H5zG1=eH\$ Hl$HsH{~H'vf(f.zf( $!<$fEfA.f([HHtHu|H8H[]HHL$HT$ H5F1}H\$ Hl$HK@f.H5 1HOHtHuHHH5HAHHHH'H+uHH$uH$HmuHH$^H$f(<$,$u f.-Quvf(jT-u!H H5~tH:1BH+H1)$T$H$\$H=˓ $H?yHt$(H\4$f.z$tfH*l$(YX,$DD$<$jD $DT$!fE.z,u*-tL H5$DI815-TtfHHDf. tD$zt@D$$BuM$$uk$HHuLstH_tH$tD$uH3 H5UCH:1HD$t@HHtf.4HnH;-K #8HI]H$HI{I|$|HxL1HLd$Lt$ LLT$ HŅLLL$ HÅHzHpH5dH;_@f.HHL= Mn$f.zH{L$]DL$D$fA.z$H{D$f|$f.=mz~nD$$$fTfTf(d$f(T$褾l$f(T$f(\f.$~%UnD$fTfVSnY$襼$能 ; $H([]Q1mdm?HmH$;$H([]f.v ~%mf($fWD$>\lf(|$Y莽X|$~%\m\$D$D$$H5slDd$H4$D$蕻D$肻!$/H(1[]$OumD$@{$kkH kH $i $yH $YH{L$|DL$D$fA.zuDL$:H $H艺D$tD\$fD.jzD~-kD4$D|$fETfETfA(Dt$fA(Dl$觻l$f(T$f(\f.$~%XkD$DT$D$H=:Hֹ(9D$蕹;AWAVAUATUSHHHH/H>HnټHIHD$(e HHI4 I|$L Hx? H\$ KMs1A IIH t%IK1ҿ HHH u I 1IHH#If.H"L_`E4+I9HJXL5C\L-WIIp1ҿ HHI t&MP1A III u I 1IIILDIFHD$)H|$(ILl$HD$L^1ILt$(M.Ll$IMM.CE1H { H5[LH8袬L|$(I7Ht$HHI7'Hm L%z H5j[LI<$^LH|$(L~YH5M)HH蟬1蛪H5z*HHy1 uH5Z*HHS[@f.HHw H9FH#f.XzYXHfHaw H9FuFYXHHժf.XzxYXHĩ@USHHHqH}Hv H9_u,WH}H9_wOf(;H[]p顬f.HLu]HHKH9<HHnH)LLH5PL#LL M A ;A* IL&H"wTHyTD0I9H dLL]PIHKI)M L N  8B* * 0IL̦AWAVIAUATIUSHLAHHHIL)HDL)HHHHLImIuL讦H+uH蠦Mt ALH[]A\A]A^A_H YL ~JHAI9HL)IH1II9uMAHL)IHI9u霫f.HD$1D$!tC"rfTW1 1Vf.vHH t H5%H9XH=t H5%H?;@USHHf.UztRD$蛤HD$Ճ;f(uHf([]¦D$'L$tH1[]D$iHD$tff.HH5 aHH5 QHH56 AHH56 1USHHH(H H;f.TD$zH{f.TD$z蘣L$HD$D$u%D$Ǥuj;u5D$H([]靥D$貣u-D$裣u!D$tH(1[]$H^D$~VHHϺ謥tHH #HHH(H-r H9F^f($آ $5cS4$fT 6Tf(L$藣L$uZ1L$谥d$f(D$f(d$D$VDD$DL$DT$uyE\fA(f. $zf(H( H-Rf(f.,$z"f(T$L$)D|RD$fDW[SDL$fA(fA(UL$\cfDUSHH(HCH;H-p H9o_\$H{H9oWT$D$:͠L$D$HӢD$t@D$ D$u|!D$1tH(1[]Ã;uD$H([]鞢D$ӠiD$H([]zef.-QD$9f.QD$æH= Hֹ豢L@SH$f(L$$ux$נD$ʠugf$f.Eфutm~->QL$fTfV 蛖HIVHHAI9 KtfE1fEffD(D=v>->ElHI9EYfA(YfD(E\A\fD(D\DYXfE(AYEYEXEXE\EXAXfE(DXE\AXDX{f(l$(fA(DT$ AX|$\5=Dd$D\$D<$AXX莐T$(~ `>f(YfD(D$|$DXfE(DD$f(\Dt$t$ \fD(\fDWDYY=fWEXYfE(YE\DXEXfA(E\fE(XDXAXD\\-<DXDXEXEXEXDXE^AX^$<1ff(ATHI9^$Yf(X\XXf(\XMY$$Y@f.ATUSHHH@HhHjHXHAIH;H-tZ H9oWH{H9oOIfL<,$f.zAuIc9H@[]A\f(\$L$T$赋AD$蟋uDD$ADT$fE(Dd$D~<E\EYfETfETfE.rEYfETfE.]D,$E1fE.AFH{HtpH9oĕ_Iucff.$$LaIHLd 1HD$(HAPjj赊H HH1:H{H9ow4$ff.w f.$HX H5k8H:sH.f.9f(k$f.9f($E1f.AWAVHAUATHUSH8H:H'HHH?HI}H W HhHEL5QX L9u!L|$HL|$IHmĔLވHHyL9pLH͊|$fLfHfI*H*H*Yf.zuL IIML uHJ\ff.sfWb9ff.sfWP9Y9f.sL誉HI+HHCI,$H:H+uHׇHL=V L9}Hmut$uH裇Hl$L趇HHtbHxL9L9HH蝉DD$EfH+H*Y\$\$uH8ImuL*uH'L贇HIHYHHL_ 1HD$(APjj`H HtAHH8Hh衈HIt#HL装E1EE1HD$HI*HH跅I,$HuLUH+)HjImuLE10*Im+LH f.H(HS H9FuPVT$D$虄tVH|$D$jL$H=XH(߆Hf.4D$zِD$t'L$H=f(fT5H(鉆D$ރaD$H=H(f(WUSHHH(HGt2H臆 4f.z@LH([]1Nff.HH5@HH56@HH5R 1Df.HH5R 1Df.HH5R 1ϦDf.HH5R 1鯦Df.HH5Q 1鏦Df.HH5Q 1oDf.HH5&R 1ODf.HH5Q ,ff.HH5Q  ff.HH5Q ff.HH5Q 1ϥDf.HH51鯥Df.HH56Q 錥ff.HH5Q 1oDf.HH5.Q 1ODf.USHHP H@HWHJ8HHH111HHHX[]1鼃ff.H~H;=P tMATUHSHpH5[ HHHt1H_H+IuHL[]A\HW`HH1HIu"HEH O H5w/HPH91كE1fUSHHHxO H9FtDH5[ H[HHt#HH+HuHjHH[]諂Hu4H辂f.0zt蝃H[]D$wHt1D$fDH=yY dHHpitaunextaftermath domain errormath range errorcopysignatan2fmodpowintermediate overflow in fsummath.fsum partials-inf + inf in fsumldexp(di)(dd)distOO:logpermk must not exceed %lldremaindercombacosacoshasinasinhatanatanhcbrtceildegreeserferfcexp2expm1fabsfactorialfloorfrexpgcdhypotiscloseisfiniteisinfisnanisqrtlcmlgammalog1plog10log2modfradianstruncprodulpstartrel_tolabs_tolmath__ceil____floor____trunc__Vulp($module, x, /) -- Return the value of the least significant bit of the float x.nextafter($module, x, y, /) -- Return the next floating-point value after x towards y.comb($module, n, k, /) -- Number of ways to choose k items from n items without repetition and without order. Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates to zero when k > n. Also called the binomial coefficient because it is equivalent to the coefficient of k-th term in polynomial expansion of the expression (1 + x)**n. Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments are negative.perm($module, n, k=None, /) -- Number of ways to choose k items from n items without repetition and with order. Evaluates to n! / (n - k)! when k <= n and evaluates to zero when k > n. If k is not specified or is None, then k defaults to n and the function returns n!. Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments are negative.prod($module, iterable, /, *, start=1) -- Calculate the product of all the elements in the input iterable. The default start value for the product is 1. When the iterable is empty, return the start value. This function is intended specifically for use with numeric values and may reject non-numeric types.trunc($module, x, /) -- Truncates the Real x to the nearest Integral toward 0. Uses the __trunc__ magic method.tanh($module, x, /) -- Return the hyperbolic tangent of x.tan($module, x, /) -- Return the tangent of x (measured in radians).sqrt($module, x, /) -- Return the square root of x.sinh($module, x, /) -- Return the hyperbolic sine of x.sin($module, x, /) -- Return the sine of x (measured in radians).remainder($module, x, y, /) -- Difference between x and the closest integer multiple of y. Return x - n*y where n*y is the closest integer multiple of y. In the case where x is exactly halfway between two multiples of y, the nearest even value of n is used. The result is always exact.radians($module, x, /) -- Convert angle x from degrees to radians.pow($module, x, y, /) -- Return x**y (x to the power of y).modf($module, x, /) -- Return the fractional and integer parts of x. Both results carry the sign of x and are floats.log2($module, x, /) -- Return the base 2 logarithm of x.log10($module, x, /) -- Return the base 10 logarithm of x.log1p($module, x, /) -- Return the natural logarithm of 1+x (base e). The result is computed in a way which is accurate for x near zero.log(x, [base=math.e]) Return the logarithm of x to the given base. If the base not specified, returns the natural logarithm (base e) of x.lgamma($module, x, /) -- Natural logarithm of absolute value of Gamma function at x.ldexp($module, x, i, /) -- Return x * (2**i). This is essentially the inverse of frexp().lcm($module, *integers) -- Least Common Multiple.isqrt($module, n, /) -- Return the integer part of the square root of the input.isnan($module, x, /) -- Return True if x is a NaN (not a number), and False otherwise.isinf($module, x, /) -- Return True if x is a positive or negative infinity, and False otherwise.isfinite($module, x, /) -- Return True if x is neither an infinity nor a NaN, and False otherwise.isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0) -- Determine whether two floating point numbers are close in value. rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values Return True if a is close in value to b, and False otherwise. For the values to be considered close, the difference between them must be smaller than at least one of the tolerances. -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves.hypot(*coordinates) -> value Multidimensional Euclidean distance from the origin to a point. Roughly equivalent to: sqrt(sum(x**2 for x in coordinates)) For a two dimensional point (x, y), gives the hypotenuse using the Pythagorean theorem: sqrt(x*x + y*y). For example, the hypotenuse of a 3/4/5 right triangle is: >>> hypot(3.0, 4.0) 5.0 gcd($module, *integers) -- Greatest Common Divisor.gamma($module, x, /) -- Gamma function at x.fsum($module, seq, /) -- Return an accurate floating point sum of values in the iterable seq. Assumes IEEE-754 floating point arithmetic.frexp($module, x, /) -- Return the mantissa and exponent of x, as pair (m, e). m is a float and e is an int, such that x = m * 2.**e. If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.fmod($module, x, y, /) -- Return fmod(x, y), according to platform C. x % y may differ.floor($module, x, /) -- Return the floor of x as an Integral. This is the largest integer <= x.factorial($module, n, /) -- Find n!. Raise a ValueError if x is negative or non-integral.fabs($module, x, /) -- Return the absolute value of the float x.expm1($module, x, /) -- Return exp(x)-1. This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.exp2($module, x, /) -- Return 2 raised to the power of x.exp($module, x, /) -- Return e raised to the power of x.erfc($module, x, /) -- Complementary error function at x.erf($module, x, /) -- Error function at x.dist($module, p, q, /) -- Return the Euclidean distance between two points p and q. The points should be specified as sequences (or iterables) of coordinates. Both inputs must have the same dimension. Roughly equivalent to: sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))degrees($module, x, /) -- Convert angle x from radians to degrees.cosh($module, x, /) -- Return the hyperbolic cosine of x.cos($module, x, /) -- Return the cosine of x (measured in radians).copysign($module, x, y, /) -- Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0, -0.0) returns -1.0. ceil($module, x, /) -- Return the ceiling of x as an Integral. This is the smallest integer >= x.cbrt($module, x, /) -- Return the cube root of x.atanh($module, x, /) -- Return the inverse hyperbolic tangent of x.atan2($module, y, x, /) -- Return the arc tangent (measured in radians) of y/x. Unlike atan(y/x), the signs of both x and y are considered.atan($module, x, /) -- Return the arc tangent (measured in radians) of x. The result is between -pi/2 and pi/2.asinh($module, x, /) -- Return the inverse hyperbolic sine of x.asin($module, x, /) -- Return the arc sine (measured in radians) of x. The result is between -pi/2 and pi/2.acosh($module, x, /) -- Return the inverse hyperbolic cosine of x.acos($module, x, /) -- Return the arc cosine (measured in radians) of x. The result is between 0 and pi.This module provides access to the mathematical functions defined by the C standard.x_7a(s(;LXww0uw~Cs+|g!??@@8@^@@@@&AKAAA2A(;L4BuwsBuwB7Bs6Ch0{CZAC Ƶ;(DlYaRwNDFQ([8X=-$244  ""##&&''))**..//112255668899??@@BBCCFFGGIIJJNNOOQQRRUUVVXXYY^^__aabbeeffhhiimmnnppqqttuuwwxxOOO//////wSnj'=)2LJTc@|mRGIQ&IQ&@)藺YiKO~Th%C_L;vye+<RO`.ͪJvʭc3Oc3O>M2)ں0Α0[GI{7U`VFQ-gq @rLX Judf!1Z+J$# ~l6I]f j@{(Pu\ p't:;x,Loۯ,(ՕJ۹D2h5ƢefgUrukFV[J0VE@m #;Uç9 7M039*ݥ;rlˣ T TRI&8?22=gf]}y߂x̑M cG桏֧D^%e~C.py2q]i[Z;m=߷a.!Y m3U2cJMlw} xO/%_p +;88n; 8h(8}6KUF6wqn|7B][P-a#leo"-;; _7a?#3\e&&s+ p1MA|Vԝm&ů.GsOM A~R3#Yoԓ0fXg^j#ݒ[n O Uw}ÍKs1Xθ*Ks1Xθ*_^ҁ[]DqXϕ<JD?΃ޑAǿNȋQ7K9˕y? K_x**!9Ѷ{u$ϻ?GA&<7Qzgݓ;Ct˻^52!C粞P3}y9Y1TmMF$6qāIסr4l!o(NJ>\ [YwXU<.+8yF`275ͭ Ţy Ţy˂%TZP+,[AR1Q~Fմ1ˠ(Wֵa\d*`a5m_Fkڡx89US%۸UN0 tpO%:D2Џ\߀:!ܣ Ϳ{[ @&PuaŒm] -q`@IAcHpCyg_ڷNqӞܧ %cQ Xu\7,`%c`8,'>rv {uJ uEw!0l~y҇%ǥx2k+IB9')8N_k‰yESѷaZ6D{קrA{9ƶg\k׆&PzTa0iV@Q\{K̚I'!+)nqi䀤h9n9aVCY1ˡTpJ+~ӤV :Gtia[VRNLJHGFEDDCCCCAiAApqAAqqiA{DAA@@P@?CQBWLup#B2 B&"B补A?tA*_{ A]v}ALPEA뇇BAX@R;{`Zj@' @isqrt() argument must be nonnegativeExpected an int as second argument to ldexp.tolerances must be non-negativetype %.100s doesn't define __trunc__ methodboth points must have the same number of dimensionsfactorial() argument should not exceed %ldfactorial() not defined for negative valuesmath.log requires 1 to 2 argumentsn must be a non-negative integerk must be a non-negative integermin(n - k, k) must not exceed %lld@-DT! @iW @-DT!@9RFߑ?cܥL@??@?#B ;E@HP?7@i@E@-DT! a@?A& .>@@0C8,6V? T꿌(J??-DT!?!3|@-DT!?-DT! @;qPM@RPRHXRRR(PSST TtTTH@UaU U V gV W@ Wx W W@ W X XXZZZ0Z[[0[0[\\]X]]H_8_0 `0 e peX eX m8pqH sH t{H@ pPP 0p0`Х HPШ0`hpPh` hв 0 PP pp @ 0 (`P 80PPhp0P(p@XpP`zRx $IFJ w?;*3$"D`N\8tAzRx $N(>D uzRx  M+j Lc dLM!`,D@UAAG0@ AAE zRx 0$tMe CAA L0BE B(D0A8PPr8A0A(B BBBA$zRx P4,M`HP]dP|D } A M4AAG0z EAE Y CAA آ44Т=AAJ@ AAE w CAA zRx @$LPXZD0 E zRx 0vLVUD$|AAG@ CAA O AAE ] AAE lL&,>AD  AA  AE PLD e E i A <AAG0 AAE  CAA L!,D\$tD e E A A xD e E | A D  E D0V A D@ A d(KBE B(A0A8GP? 8D0A(B BBBA {JPAK>TxUKBB A(D0G@ 0A(A BBBA YG@$zRx @,JjL4б:_BE B(D0A8PP 8A0A(B BBBA J^hUVBBE B(A0A8D`{ 8C0A(B BBBH = 8D0A(B BBBA  8E0D(B BBBE 8A0E(B BBB$zRx `,,oJ+j 8C0A(B BBBE XhD [ H ] H JKFYhD [ H ] H KFHAD [ H <J!`L4 `BBBE B(D0A8G 8A0A(B BBBA $zRx ,yJ L XBBE B(A0A8G 8D0A(B BBBA $zRx ,I/LT JBBD D(J0g (A ABBE q (D ABBA 4 P_BAD D@  AABB zRx @$>J&D гsBAA J`  AABA hXpBxBI`zRx `$I\ еUBBE B(D0A8DpO 8D0A(B BBBA xUBBIp$zRx p,`J$4 `AD0 G  E lJF$t PD0X E Q E iJTD a-BAD G0r  AABL R  CABA , TAAJ@| AAA  JD й \ ȹ t  ȹ й ع  4Ld| (0$8TAAD EAAzRx  $HBJA4D0OAD BABAP zRx  $jH4_iAQ0k DAA AAA4(AAG0A DAA g AAE L$``BBB B(A0A8J5 8D0A(B BBBA $zRx ,|G<LpgBBE B(A0A8Dp 8D0A(B BBBM PG4oAG  AE m AE _ CA zRx  $}G,q'AG q AF R CA ,rAAGP DAA zRx P$Fv$$tD U E \ A $LhuD U E \ A Ltv BFB B(D0A8JPB 8D0A(B BBBA FxDyhAAG@O AAE G AAE  CAA FJL<}BBB B(A0A8G 8D0A(B BBBP $zRx ,F Ѕ ϱ5 ak{ / L  o 0  !P' oxooo( V/f/v/////////00&060F0V0f0v00000000011&161F1V1f1v11111111122&262F2V2f2v22222222233&363F3V3f3v33333333344&47< BG @M@Ќ R`X]A@8@m=b@V jnp0h`s x~ ]U@PRG`˱` A `pП F`G@BƱМO@ʱP`i@ѱ ױ`ݱ P`( rCplH@@pfN`S` n2v g`!! ",math.cpython-311-x86_64-linux-gnu.so.debugF*7zXZִF!t/]?Eh=ڊ2Nh!+dXv0ĽiUw$яB忭2{oSDZ[0M4zǞE[4X^Sy6y*W 77?=焴I۹Rd#D !5Zߌ7W`!GB#)Zexq#k.Ϩ;;AkFUߙwiF Z߮x01[̂yc"st;`ӂ]t~SG89`9M9/ j4*Ԗth~AJ`}.w1VNXyg F>TOY~Gb?GCIQX?_>=b׼d֎"Il،UԄcSɝeū2CTpSjVfMyA0lr\Q2j!k2t i] 6\mMp)ku?>E  OheYscᰢ=<Ȗ^f9VH"4KZLo fm,$ҍ|yEÑ V|_Yҡ @f&s3xY.w`ԾƾҤ !&Enϗ7Lt@u;i?|<_,d]:OO B`6$Z!X 8&hL "0h&k4ʟÐ D2{O |۰QS7]u$Z^W-ɡR{d|\#2h}fMLJ,0٬Cտj' *I|KpOu yVyφcTǭkj5V )-]fOMGl_ʔg _o;\J֛¨t IVWW}g5O"i@r޷a^`- 27ߠD+|f!!iIoχΟE}G@XƬ+-D˼ZF&5=7Ԇ*`LЅ`$5 O_"4^vyNN,:]>7_,q FRcčÊ@I vW?gK qYj1R4mA~zYؽ"WDyxT)J]7_W>HZí2Zi*{؋<=M*3[<ރ h^# [WrI"5 /Yv!6s˳N NT_dp,!**nB"%|~W>ft_~7GR](Bh0>(dh9ː _P.h7/l5؁A(@5jqbC{I؂貣vrE͸YGfB;S}g/ޅ󭇨%KD=YmS>B ' t@A!NPeNv6&΢sYJ#4>Sx41%4\ ';.(ףENT/jݯ^G*ƪMޕRmHBFоa<,Rr4&16doe[KP&qbx3)Wt M6v(!dW^S4tz~Dw<1$JUXGu+L9NwT8DO|